Demo Example

Your Company Address

COMPRESS Pressure Vessel Design Calculations

Vessel No: Demo Vessel Designer: CD Date: Wednesday, January 05, 2022

Table of Contents

Deficiencies Summary	1
Nozzle Schedule	2
Nozzle Summary	3
Pressure Summary	4
Revision History	5
Settings Summary	6
Radiography Summary	8
Thickness Summary	9
Weight Summary	10
Long Seam Summary	11
Hydrostatic Test	13
Vacuum Summary	14
Bill of Materials	15
Welded Cover #1	16
Cylinder #2	18
Rings #1 (Ring #3 in Group)	20
Rings #1 (Ring #4 in Group)	23
Cylinder #1	26
Nozzle #1 (N1)	29
Rings #1 (Ring #2 in Group)	46
Rings #1	49
Straight Flange on Ellipsoidal Head #2	52
Ellipsoidal Head #2	54
Liquid Level bounded by Ellipsoidal Head #2	56

Deficiencies Summary

Deficiencies for <u>Nozzle #1 (N1)</u> Nozzle is located on top of the parent component's longitudinal seam. Move the longitudinal seam or activate the option switch "Through a Category A Joint" in the nozzle dialog.

Warnings Summary

Warnings for Vessel

Supports have not been added to this vessel; combined loads are not being considered. (warning) Changes to steelmaking practices have increased the risk of brittle fracture at temperatures higher than the ASME impact test exemption temperatures. It is highly recommended that the following supplemental requirements be applied for SA-105, SA-106 B, SA-53 seamless, and SA-234: material composition should have a minimum Mn:C ratio of 5, and SA-105 flanges should require a grain size of 7 or finer. (warning)

Warnings for <u>Welded Cover #1</u> Internal design pressure varies across this chamber. (warning) Check the following component(s): (warning) Cylinder #2 (warning)

Nozzle Schedule

	Specifications											
Nozzle mark	Identifier	Size	Materials		Impact Tested	Normalized	Fine Grain	Flange	Blind			
<u>N1</u>	Nozzle #1	6.625 OD x 0.28	Nozzle	SA-105	No	No	No	N/A	No			

Nozzle Summary

Dimensions												
Nozzle	OD	OD t _n	Req t _n	A 2	A 2		Shell		Reinforc Pac	ement 1	Corr	A _a /A _r
mark	(in)	(in)	(in) (in)	~ 1' '	A ₂ r	Nom t (in)	Design t (in)	User t (in)	Width (in)	t _{pad} (in)	(in)	(%)
<u>N1</u>	6.625	0.28	0.116	Yes	Yes	0.1875	0.116		N/A	N/A	0	100.0

	Definitions									
tn	Nozzle thickness									
Req t _n	Nozzle thickness required per UG-45/UG-16									
Nom t	Vessel wall thickness									
Design t	Required vessel wall thickness due to pressure + corrosion allowance per UG-37									
User t	Local vessel wall thickness (near opening)									
A _a	Area available per UG-37, governing condition									
A _r	Area required per UG-37, governing condition									
Corr	Corrosion allowance on nozzle wall									

Pressure Summary

		Compo	nent Sur	nmary					
Identifier	P Design (psi)	T Design (°F)	MAWP (psi)	MAP (psi)	MAEP (psi)	T _e external (°F)	MDMT (°F)	MDMT Exemption	Impact Tested
Welded Cover #1	100	250	132.92	132.92	80.56	250	-20	Note 1	No
Cylinder #2	100	250	308.73	309.6	139.63	250	-55	Note 2	No
Cylinder #1	100	250	307.43	309.6	139.63	250	-55	Note 3	No
Straight Flange on Ellipsoidal Head #2	150	250	307.36	309.6	139.63	250	-55	Note 5	No
Ellipsoidal Head #2	150	250	150.1	152.55	32.5	250	-55	Note 4	No
Rings #1 (Ring #3 in Group)	N/A	N/A	N/A	N/A	139.63	250	-55	Note 6	No
Rings #1 (Ring #4 in Group)	N/A	N/A	N/A	N/A	139.63	250	-55	Note 6	No
Rings #1 (Ring #2 in Group)	N/A	N/A	N/A	N/A	139.63	250	-55	Note 7	No
Rings #1	N/A	N/A	N/A	N/A	139.63	250	-55	Note 7	No
Nozzle #1 (N1)	100	250	190.81	192.25	104.69	250	-55	Note 8	No

Chamber Summary						
Design MDMT	-20 °F					
Rated MDMT	-20 °F @ 132.92 psi					
MAWP hot & corroded	132.92 psi @ 250 °F					
MAP cold & new	132.92 psi @ 70 °F					
MAEP	32.5 psi @ 250 °F					

Design	MDMT	-20 °F										
Rated I	MDMT	-20 °F @ 132.92 psi										
MAWP hot & corroded 132.92 psi @ 250 °F		132.92 psi @ 250 °F										
MAP co	old & new	132.92 psi @ 70 °F										
MAEP		32.5 psi @ 250 °F										
		•										
	Notes for MDMT Rating											
Note #		Exe	mption	Details								
1.	Head is impact	test exempt per UG-20	D(f)	UCS-66 governing thickness = 0.2188 in								
2.	Material impac Fig UCS-66.1 Rated MDMT c	t test exemption tempe MDMT reduction = 77.4 of -97.4°F is limited to -	UCS-66 governing thickness = 0.1875 in									
3.	Material impac Fig UCS-66.1 Rated MDMT c	t test exemption tempe MDMT reduction = 75. of -95.7°F is limited to -	UCS-66 governing thickness = 0.1875 in									
4.	Straight Flang	e governs MDMT										
5.	Material impac Fig UCS-66.1 Rated MDMT c	t test exemption tempe MDMT reduction = 75. of -95.6°F is limited to -	erature from Fig UCS-66 Curve B = -20°F 3°F, (coincident ratio = 0.4343) 55°F by UCS-66(b)(2)	UCS-66 governing thickness = 0.1875 in								
6.	Ring impact te Fig UCS-66.1 Rated MDMT c	st exemption temperat MDMT reduction = 77.4 of -97.4°F is limited to -	ure from Fig UCS-66 Curve B = -20°F 4°F, (coincident ratio = 0.4298) 55°F by UCS-66(b)(2)	UCS-66 governing thickness = 0.25 in								
7.	Ring impact te Fig UCS-66.1 Rated MDMT c	st exemption temperat MDMT reduction = 75. of -95.7°F is limited to -	ure from Fig UCS-66 Curve B = -20°F 7°F, (coincident ratio = 0.434) 55°F by UCS-66(b)(2)	UCS-66 governing thickness = 0.25 in								
8.	Nozzle impact Fig UCS-66.1 Rated MDMT c	test exemption temper MDMT reduction = 76.0 of -96.6°F is limited to -	ature from Fig UCS-66 Curve B = -20°F 6°F, (coincident ratio = 0.4317) 55°F by UCS-66(b)(2)	UCS-66 governing thickness = 0.1875 in.								

Revision History

	Revisions									
No.	Date	Operator	Notes							
0	1/ 5/2022	christian.dionisio	New vessel created ASME Section VIII Division 1 [COMPRESS 2022 Build 8200]							

Settings Summary

COMPRESS 2022 Build 8200												
ASME Section VIII Division 1, 2021 Edition												
Units	U.S. Customary											
Datum Line Location	0.00" from bottom seam											
Vessel Design Mode	Design Mode											
Minimum thickness	0.0625" per UG-16(b)											
Design for cold shut down only	No											
Design for lethal service (full radiography required)	No											
Design nozzles for	Design P only											
Corrosion weight loss	100% of theoretical loss											
UG-23 Stress Increase	1.00											
Skirt/legs stress increase	1.0											
Minimum nozzle projection	6"											
Juncture calculations for α > 30 only	Yes											
Preheat P-No 1 Materials > 1.25" and <= 1.50" thick	No											
UG-37(a) shell tr calculation considers longitudinal stress	No											
Cylindrical shells made from pipe are entered as minimum thickness	No											
Nozzles made from pipe are entered as minimum thickness	No											
ASME B16.9 fittings are entered as minimum thickness	No											
Butt welds	Tapered per Figure UCS-66.3(a)											
Disallow Appendix 1-5, 1-8 calculations under 15 psi	No											
Hydro/Pneumatic Test												
Shop Hydrotest Pressure	1.3 times vessel MAWP [UG-99(b)]											
Test liquid specific gravity	1.00											
Maximum stress during test	90% of yield											
Required Marking - UG-116												
UG-116(e) Radiography	RT1											
UG-116(f) Postweld heat treatment	None											
Code Cases\Interpretations												
Use Appendix 46	Lise Appendix 46											
	No											
Use UG-44(b)	No No											
Use UG-44(b) Apply interpretation VIII-1-83-66	No No Yes											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175	No No Yes Yes											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37	No No Yes Yes Yes											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150	No No Yes Yes Yes Yes											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50	No No Yes Yes Yes Yes Yes											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85	No No Yes Yes Yes Yes No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction	No No Yes Yes Yes Yes No No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction	No No Yes Yes Yes Yes No No No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions	No No Yes Yes Yes Yes No No No No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions UG-22 Loadings	No No Yes Yes Yes Yes No No No No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-6-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions UG-22 Loadings UG-22(a) Internal or External Design Pressure	No No Yes Yes Yes Yes Yes No No No No Yo Yes Yes											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions UG-22(a) Internal or External Design Pressure UG-22(b) Weight of the vessel and normal contents under operating or test conditions	No No Yes Yes Yes Yes No No No No Yes Yes No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-50 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions UG-22 Loadings UG-22(a) Internal or External Design Pressure UG-22(b) Weight of the vessel and normal contents under operating or test conditions UG-22(c) Superimposed static reactions from weight of attached equipment (external loads)	No No Yes Yes Yes Yes Yes No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-50 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions UG-22 Loadings UG-22(a) Internal or External Design Pressure UG-22(b) Weight of the vessel and normal contents under operating or test conditions UG-22(c) Superimposed static reactions from weight of attached equipment (external loads) UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs	No No Yes Yes Yes Yes Yes No No No No No Yes No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-1-01-37 Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions UG-22 Loadings UG-22(a) Internal or External Design Pressure UG-22(b) Weight of the vessel and normal contents under operating or test conditions UG-22(c) Superimposed static reactions from weight of attached equipment (external loads) UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs UG-22(f) Wind reactions	No No Yes Yes Yes Yes Yes No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-101-37 Apply interpretation VIII-101-50 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions UG-22 Loadings UG-22(a) Internal or External Design Pressure UG-22(b) Weight of the vessel and normal contents under operating or test conditions UG-22(c) Superimposed static reactions from weight of attached equipment (external loads) UG-22(f) Wind reactions UG-22(f) Wind reactions UG-22(f) Seismic reactions	No No Yes Yes Yes Yes Yes Yes No											
Use UG-44(b) Apply interpretation VIII-1-83-66 Apply interpretation VIII-1-86-175 Apply interpretation VIII-101-37 Apply interpretation VIII-101-150 Apply interpretation VIII-107-50 Apply interpretation VIII-1-6-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions UG-22 Loadings UG-22(a) Internal or External Design Pressure UG-22(b) Weight of the vessel and normal contents under operating or test conditions UG-22(c) Superimposed static reactions from weight of attached equipment (external loads) UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs UG-22(f) Wind reactions UG-22(f) Seismic reactions UG-22(f) Seismic reactions UG-22(f) Test pressure and coincident static head acting during the test:	No No Yes Yes Yes Yes Yes No No											

License Information							
Company Name	Codeware, Inc.						
License	Commercial						
License Key ID	23740						
Support Expires	July 03, 2022						

Radiography Summary

	UG-116 Radiography												
Component	Lo	ongitudinal Seam	Тор (Circumferential Seam	Bottom								
	Category (Fig UW-3)	Radiography / Joint Type	Category (Fig UW-3)	Radiography / Joint Type	Category (Fig UW-3)	Radiography / Joint Type	Mark						
Welded Cover #1	N/A	Seamless No RT	N/A	N/A	N/A	N/A	N/A						
Cylinder #2	A	Full UW-11(a) / Type 1	N/A	N/A	В	Full UW-11(a) / Type 1	RT1						
Cylinder #1	A	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 1	RT1						
Ellipsoidal Head #2	N/A	Seamless No RT	В	Full UW-11(a) / Type 1	N/A	N/A	RT1						
Nozzle	Lo	ongitudinal Seam	Nozzle to Vessel Circumferential Seam		Nozzle free	end Circumferential Seam							
Nozzle #1 (N1)	N/A	Seamless No RT	D	N/A / Type 7	В	UW-11(a)(4) exempt	N/A						
		UG	6-116(e) Requ	uired Marking: RT1									

Thickness Summary

Component Data												
Component Identifier	Material	Diameter (in)	Length (in)	Nominal t (in)	Design t (in)	Total Corrosion (in)	Joint E	Load				
Welded Cover #1	SA-516 70	24 ID	0.875	0.875	0.7589	0	1.00	Internal				
Cylinder #2	SA-516 70	24 ID	36	0.1875	0.0651	0	1.00	External				
Cylinder #1	SA-516 70	24 ID	36	0.1875	0.0651	0	1.00	External				
Straight Flange on Ellipsoidal Head #2	SA-516 70	24 ID	2	0.1875	0.0918	0	1.00	Internal				
Ellipsoidal Head #2	SA-516 70	24 ID	6.0916	0.0916*	0.0916	0	1.00	Internal				
*Head minimum thickness after forming												

Definitions					
Nominal t	Vessel wall nominal thickness				
Design t	Required vessel thickness due to governing loading + corrosion				
Joint E Longitudinal seam joint efficiency					
	Load				
Internal	Circumferential stress due to internal pressure governs				
External	External pressure governs				
Wind	Combined longitudinal stress of pressure + weight + wind governs				
Seismic	Combined longitudinal stress of pressure + weight + seismic governs				

Weight Summary

Weight (Ib) Contributed by Vessel Elements											
Component	Metal Metal New* Corroded	Inculation	Insulation	Lining	Piping	Operating Liquid		Test Liquid		Surface Area	
		Corroded	rroded	Supports	Linnig	+ Liquid	New	Corroded	New	Corroded	ft ²
Welded Cover #1	115.6	115.6	0	0	0	0	0	0	0	0	4
Cylinder #2	145.2	145.2	0	0	0	0	391.9	391.9	587.9	587.9	19
<u>Cylinder #1</u>	143.3	143.3	0	0	0	0	594.1	594.1	594.1	594.1	19
Ellipsoidal Head #2	25.4	25.4	0	0	0	0	98	98	98	98	6
TOTAL:	429.5	429.5	0	0	0	0	1,084	1,084	1,280	1,280	48
*Shells with attached	*Shells with attached nozzles have weight reduced by material cut out for opening										

Weight (Ib) Contributed by Attachments											
Component	Body Flanges		Nozzles & Flanges		Packed Ladders	Ladders &	Trays	Tray	Rings &	Vertical	Surface Area
	New	Corroded	New	Corroded	Beas	Flationits		Supports	Clips	Loaus	π-
Welded Cover #1	0	0	0	0	0	0	0	0	0	0	0
Cylinder #2	0	0	0	0	0	0	0	0	17.3	0	4
Cylinder #1	0	0	10.5	10.5	0	0	0	0	17.3	0	5
Ellipsoidal Head #2	0	0	0	0	0	0	0	0	0	0	0
TOTAL:	0	0	10.5	10.5	0	0	0	0	34.5	0	9

Vessel Tota	Vessel Totals				
	New	Corroded			
Operating Weight (Ib)	1,559	1,559			
Empty Weight (Ib)	474	474			
Test Weight (lb)	1,754	1,754			
Surface Area (ft ²)	56	-			
Capacity** (US gal)	153	153			
**The vessel capacity does not include volume	of nozzle, piping	g or other attachments.			

Vessel Lift Condition	
Vessel Lift Weight, New (lb)	474
Center of Gravity from Datum (in)	42.4612

Shell Long Seam Angles				
Component	Seam 1			
Cylinder #2	30°			
Cylinder #1	0°			

Shell Plate Lengths						
Component	Starting Angle	Plate 1				
Cylinder #2	30°	75.9873"				
Cylinder #1	0°	75.9873"				

Notes

Plate Lengths use the circumference of the vessel based on the mid diameter of the components.
 North is located at 0°

N	E	S	W
		Θ_{I}	

Shell Rollout

Hydrostatic Test

Horizontal shop hydrostatic test based on MAWP per UG-99(b)

Gauge pressure at 70°F $= 1.3 \cdot MAWP \cdot LSR$

$$= 1.3\cdot 132.92\cdot 1$$

=172.8 psi

Horizontal shop hydrostatic test									
Identifier	Local test pressure (psi)	Test liquid static head (psi)	UG-99(b) stress ratio	UG-99(b) pressure factor					
Cylinder #2 (1)	173.887	1.09	1	1.30					
Cylinder #1	173.887	1.09	1	1.30					
Straight Flange on Ellipsoidal Head #2	173.887	1.09	1	1.30					
Ellipsoidal Head #2	173.887	1.09	1	1.30					
Welded Cover #1	173.887	1.09	1	1.30					
Nozzle #1 (N1)	173.014	0.217	1	1.30					

(1) Cylinder #2 limits the UG-99(b) stress ratio.
 (2) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange.
 (3) UG-99(i): Custom flange assemblies shall be tested with gaskets having identical geometries and gasket factors, and bolting having identical allowable stress at room temperature as used in the design calculations.

The field test condition has not been investigated.

The test temperature of 70 °F is warmer than the minimum recommended temperature of 10 °F so the brittle fracture provision of UG-99(h) has been met.

Vacuum Summary

Largest Unsupported Length Le							
Component	Line of Support	Elevation above Datum (in)	Length Le (in)				
Welded Cover #1	-	72.875	N/A				
-	Welded Cover #1	72	N/A				
Cylinder #2 Top	-	72	16				
-	Rings #1 (Ring #4 in Group)	60	14				
-	Rings #1 (Ring #3 in Group)	44	16				
Cylinder #2 Bottom	-	36	16				
Cylinder #1 Top	-	36	16				
-	Rings #1 (Ring #2 in Group)	28	16				
-	<u>Rings #1</u>	12	16				
Cylinder #1 Bottom	-	0	16				
Straight Flange on Ellipsoidal Head #2 Top	-	0	16				
Straight Flange on Ellipsoidal Head #2 Bottom	-	-2	16				
-	1/3 depth of Ellipsoidal Head #2	-4	N/A				
Ellipsoidal Head #2	-	-8.0916	N/A				
For Rings, the listed value of length Le is Ls per	UG-29.						

Bill of Materials

Heads / Covers									
Item #	Туре	Material	Thk [in]	Dia. [in]	Wt. [lb] (ea.)	Qty			
H1	Ellipsoidal Head	SA-516 70	0.0916 (min.)	24 ID	25.4	1			
H2	Welded Cover	SA-516 70	0.875	24 ID	115.6	1			

Shells										
Item #	Туре	Material	Thk [in]	Dia. [in]	Length [in]	Wt. [lb] (ea.)	Qty			
S1	Cylinder	SA-516 70	0.1875	24 ID	36	145.2	2			

Rings						
Item # Type Material Thk [in] Length [in] Wt. [lb]						Qty
R1	1/4x1.5 Flat Bar	SA-516 70	0.25	81.3	8.6	4

Nozzles							
Item #	Туре	Material	NPS	Thk [in]	Dia. [in]	Length [in]	Wt. [lb]
Noz1	Nozzle	SA-105	-	0.28	6.625 OD	6.7	10.5

OPEN ALE

Welded Cover #1

ASME Section VIII Division 1, 2021 Edition						
Com	ponent	Welded Cover				
Config	guration		Figure UG-34 Sketo	ch (i)		
Weld	l Detail	F	igure UW-13.2 Sket	ch (a)		
Ma	terial	SA	4-516 70 (II-D p. 20,	ln. 45)		
Attac	ched To		Cylinder #2			
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Int	ernal	100	250	-20		
Ext	ternal	15	250	-20		
		Static Liqu	uid Head			
Con	dition	P _s (psi)	H _s (in)	SG		
Test h	orizontal	1.09 30.1875 1				
		Dimensions				
Inner I	Diameter	24"				
Nominal	Thickness	0.875"				
Weld Bev	el Depth (a)	0.375"				
Weld Beve	el Depth (t _w)	0.1875"				
Inner Fille	et Weld Leg	0.1875"				
Corrosion	Inner		0"			
Corrosion	Outer		0"			
		Weight and	Capacity			
		Wei	ght (lb)	Capacity (US gal)		
N	lew	1	15.55	0		
Cor	roded	1	15.55	0		
		Radiog	raphy			
Catego	ry A joints		Seamless No R	г		
		Poculto Summ	loru			
		Results Summ	ary			

Results Summary						
Governing condition	internal pressure					
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"					
Design thickness due to internal pressure (t)	<u>0.7589</u> "					
Design thickness due to external pressure (t_e)	<u>0.3776</u> "					
Maximum allowable working pressure (MAWP)	<u>132.92</u> psi					
Maximum allowable pressure (MAP)	<u>132.92</u> psi					
Maximum allowable external pressure (MAEP)	<u>80.56</u> psi					
Rated MDMT	-20°F					

UCS-66 Material Toughness Requirements					
Governing thickness, t _g =	0.2188"				
MDMT =	-20°F				
Material is exempt from impact testing per UG-20(f) at the Design MDMT of -20°F.					

Figure UW-13.2 Weld Sizing								
$t_{ m leg} \ge t_s + rac{C_i}{0.7}$								
$a \geq 2t_s + rac{C_{i,shell}}{0.7} + C_{o,shell}$								
			Results					
$t_{ m leg} =$	0.1875"	≥	$0.1875 + rac{0}{0.7} =$	0.1875"	~			
a =	0.375"	\geq	$2 \cdot 0.1875 + \frac{0}{0.7} + 0 =$	0.375"	~			

Factor C from Figure UG-34 Sketch (i)

$$C = \max \left(\frac{0.33 \cdot t_r}{t_s} \quad , \quad 0.2 \right) = \max \left(\frac{0.33 \cdot 0.0602}{0.1875} \quad , \quad 0.2 \right) = 0.2$$

Design thickness, (at 250 °F) UG-34(c)(2)

$$t = d \cdot \sqrt{\frac{C \cdot P}{S \cdot E}} + \text{Corrosion} = 24 \cdot \sqrt{\frac{0.2 \cdot 100}{20,000 \cdot 1}} + 0 = 0.7589$$

Maximum allowable working pressure, (at 250 °F)

$$C = \max \left(\frac{0.33 \cdot t_r}{t_s} \quad , \quad 0.2 \right) = \max \left(\frac{0.33 \cdot 0.0801}{0.1875} \quad , \quad 0.2 \right) = 0.2$$

$$MAWP = \left(\frac{S \cdot E}{C}\right) \cdot \left(\frac{t}{d}\right)^2 - P_s = \left(\frac{20,000 \cdot 1}{0.2}\right) \cdot \left(\frac{0.875}{24}\right)^2 - 0 = \underline{132.92} \text{ psi}$$

Maximum allowable pressure, (At 70 °F)

$$C = \max\left(\frac{0.33 \cdot t_r}{t_s} , 0.2\right) = \max\left(\frac{0.33 \cdot 0.0801}{0.1875} , 0.2\right) = 0.2$$
$$MAP = \left(\frac{S \cdot E}{C}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{20,000 \cdot 1}{0.2}\right) \cdot \left(\frac{0.875}{24}\right)^2 = \underline{132.92} \text{ psi}$$

Design thickness for external pressure, (at 250 °F) UG-34(c)(2)

$$t = d \cdot \sqrt{\frac{C \cdot P_e}{S \cdot E}} + \text{Corrosion} = 24 \cdot \sqrt{\frac{0.33 \cdot 15}{20,000 \cdot 1}} + 0 = \underline{0.3776}"$$

Maximum allowable external pressure, (At 250 °F)

MAEP =
$$\left(\frac{S \cdot E}{C}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{20,000 \cdot 1}{0.33}\right) \cdot \left(\frac{0.875}{24}\right)^2 = \frac{80.56}{24}$$
 psi

Cylinder #2

ASME Section VIII Division 1, 2021 Edition						
Com	ponent	Cylinder				
Ма	terial	SA	A-516 70 (II-D p. 20,	ln. 45)		
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Int	ernal	100	250	20		
Ext	ernal	15	250	-20		
		Static Liquid	Head			
Con	dition	P _s (psi)	H _s (in)	SG		
Operating		0.87	24	1		
Test h	orizontal	1.09 30.1875		1		
		Dimension	IS			
Inner I	Diameter		24"			
Le	ngth	36"				
Nominal	Thickness	0.1875"				
Corrosion	Inner		0"			
Contrasion	Outer		0"			
		Weight and Ca	pacity			
		Wei	ght (lb)	Capacity (US gal)		
New		145.15		70.5		
Corroded		145.15 70.5				
		Radiograp	hy			
Longitu	dinal seam		Full UW-11(a) Typ	e 1		
Bottom Circu	mferential seam		Full UW-11(a) Typ	e 1		

Results Summary						
Governing condition	External pressure					
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"					
Design thickness due to internal pressure (t)	0.0608"					
Design thickness due to external pressure (t_e)	<u>0.0651"</u>					
Maximum allowable working pressure (MAWP)	<u>308.73 psi</u>					
Maximum allowable pressure (MAP)	<u>309.6 psi</u>					
Maximum allowable external pressure (MAEP)	<u>139.63 psi</u>					
Rated MDMT	-55 °F					

UCS-66 Material Toughness Requirements					
Governing thickness, t _g =	0.1875"				
Exemption temperature from Fig UCS-66 Curve B =	-20°F				
$t_r = rac{133.79 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 133.79} =$	0.0806"				
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0806 \cdot 1}{0.1875 - 0} =$	0.4298				
Reduction in MDMT, T _R from Fig UCS-66.1 =	77.4°F				
$MDMT = \max[MDMT - T_R, -55] = \max[-20 - 77.4, -55] =$					
Material is exempt from impact testing at the Design MDMT of -	20°F.				

Design thickness, (at 250 °F) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{100.87 \cdot 12}{20,000 \cdot 1.00 - 0.60 \cdot 100.87} + 0 = \underline{0.0608}$ "

Maximum allowable working pressure, (at 250 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{20,000 \cdot 1.00 \cdot 0.1875}{12 + 0.60 \cdot 0.1875} - 0.87 = \underline{308.73} \text{ psi}$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 0.1875}{12 + 0.60 \cdot 0.1875} = \underline{309.6} \text{ psi}$

External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$
$$\frac{D_o}{t} = \frac{24.375}{0.0651} = 374.4084$$

From table G: A = 0.000291

From table CS-2: B = 4,212.0919 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4,212.09}{3 \cdot (24.375/0.0651)} = 15$$
 psi

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.0651 + 0 = 0.0651$ "

Maximum Allowable External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$
$$\frac{D_o}{t} = \frac{24.375}{0.1875} = 130.0000$$

From table G: A = 0.001425

From table CS-2: B = 13,613.5745 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 13,613.57}{3 \cdot (24.375/0.1875)} = rac{139.63}{139.63} \, \mathrm{psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.1875}{12.0938}\right) \cdot \left(1 - \frac{12.0938}{\infty}\right) = 0.7752\%$$

The extreme fiber elongation does not exceed 5%.

Rings #1 (Ring #3 in Group)

	ASME Section VIII Division 1, 2021 Edition					
	Component	Stiffening Ring				
	Material	SA-51	6 70 (II-D p. 20, ln. 4	45)		
	Attached To		Cylinder #2			
Impact Tested	Normalized	Fine Grain Practice	PWHT			
No	No	No	No			
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
	Internal	100	250	_20		
	External	15	250	-20		
	Ring Pro	operties				
Ring type			Flat bar			
Description			1/4x1.5 Flat Bar			
Corrosion allowa	ance	0"				
Distance from rin	ng neutral axis to datum	44"				
Distance to previ	ous support		16"			
Distance to next	support		16"			
Internal ring			No			
Max depth to thic	ckness ratio		12			
Ring distance to	centroid		0.75"			
Ring area		0.375 in ²				
Ring inertia		0.0703 in ⁴				
	Wel	lds				
Weld configurati	on	Staggered intermittent				
Fillet weld leg si	ze	0.25"				
Length of individ	lual weld segments		3"			
Spacing between	n toes of weld segments	1.5"				
Vessel thickness	at weld location, new	0.1875"				
Vessel corrosion	allowance at weld location	0"				
Stiffener thickne	ss at weld location		0.25"			

UCS-66 Material Toughness Requirements				
Governing thickness, t _g =	0.25"			
Exemption temperature from Fig UCS-66 Curve B =	-20°F			
$t_r = \frac{133.79 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 133.79} =$	0.0806"			
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0806 \cdot 1}{0.1875 - 0} =$	0.4298			
Reduction in MDMT, T _R from Fig UCS-66.1 =	77.4°F			
$MDMT = \max [MDMT - T_R, -55] = \max [-20 - 77.4, -55] =$	-55°F			
Material is exempt from impact testing at the Design MDMT of -20°F.				

External Pressure, (Corroded & at 250°F) UG-29(a)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$
$$\frac{D_o}{t} = \frac{24.375}{0.0651} = 374.194$$

From Table G: A = 2.908E-04

From Table CS-2: B = 4,216.38 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = rac{4 \cdot 4,216.38}{3 \cdot (24.375 \ / \ 0.06514)} = 15.02 ~{
m psi}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s \ / \ L_s}\right) = \frac{3}{4} \cdot \left(\frac{15 \cdot 24.375}{0.0651 + 0.375 \ / \ 16}\right) = 3,097 \text{ psi}$$

From Table CS-2: A = 0.00021330 (ring, 250°F)

$$J_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$

$$= \frac{24.375^{2} \cdot 16 \cdot (0.0651 + 0.375 / 16) \cdot 0.00021330}{10.9}$$

$$= 0.0165 \text{ in}^{4}$$

I' for the composite corroded shell-ring cross section is 0.2159 in⁴

As $l' \ge l_s' a 1/4x1.5$ Flat Bar stiffener is adequate for an external pressure of 15 psi.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [0.25, 0.1875 - 0 - 0, 0.25] + 0 = 0.1875 in

The fillet weld size of 0.25 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 15 \cdot 16 = 240 \ \text{lb}_f/\text{in}$ Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 15 \cdot 16 \cdot 24.375 = 58.5 \ \text{lb}_f$ First moment of area, $Q = 0.44 \cdot 0.3878 = 0.171 \ \text{in}^3$

Weld shear flow, $q = rac{V \cdot Q}{I'} = 46.3385 ~ \mathrm{lb}_f/\mathrm{in}$

Combined weld load, $f_w = \sqrt{240^2 + 46.3385^2} = 244.43$ $\mathrm{lb}_f/\mathrm{in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 20,000 = 11,000$ psi

Fillet weld size required to resist radial pressure and shear

 $t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{244.43 \cdot (3 + 1.5)}{11,000 \cdot 6} + 0 = 0.0167$ in

The fillet weld size of 0.25 in is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 250°F) UG-29(a)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$

$$\frac{D_o}{t} = \frac{24.375}{0.1875} = 130$$

From Table G: A = 0.0014

From Table CS-2: B = 13,613.57 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = rac{4 \cdot 13,613.57}{3 \cdot (24.375 \ / \ 0.1875)} = 139.63 ~{
m psi}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s / L_s}\right) = \frac{3}{4} \cdot \left(\frac{139.63 \cdot 24.375}{0.1875 + 0.375 / 16}\right) = 12,101 \text{ psi}$$

From Table CS-2: A = 0.00095942 (ring, 250°F)

$$I_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$
$$= \frac{24.375^{2} \cdot 16 \cdot (0.1875 + 0.375 / 16) \cdot 0.00095942}{10.9}$$
$$= 0.1765 \text{ in}^{4}$$

I' for the composite corroded shell-ring cross section is 0.2159 in⁴

As $I' >= I_s'$ a 1/4x1.5 Flat Bar stiffener is adequate for an external pressure of 139.63 psi.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [0.25, 0.1875 - 0 - 0, 0.25] + 0 = 0.1875 in

The fillet weld size of 0.25 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 139.63 \cdot 16 = 2,234.02$ lb_f/in

Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 139.63 \cdot 16 \cdot 24.375 = 544.54$ lb $_{f}$

First moment of area, $Q = 0.44 \cdot 0.3878 = 0.171$ in³

Weld shear flow, $q = rac{V \cdot Q}{I^{'}} = 431.3382 \ \ \mathrm{lb}_f/\mathrm{in}$

Combined weld load, $f_w = \sqrt{2,\!234.0214^{-2} + 431.3382^{-2}} = 2,\!275.28~{
m lb}_f/{
m in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 20,000 = 11,000$ psi

Fillet weld size required to resist radial pressure and shear

$$t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{2,275.28 \cdot (3 + 1.5)}{11,000 \cdot 6} + 0 = 0.1551 ext{ in}$$

The fillet weld size of 0.25 in is adequate to resist radial pressure and shear.

Rings #1 (Ring #4 in Group)

	ASME Section VIII Division 1, 2021 Edition					
	Component	Stiffening Ring				
	Material	SA-516 70 (II-D p. 20, In. 45)				
	Attached To		Cylinder #2			
Impact Tested	Normalized	Fine Grain Practice	PWHT			
No	No	No	No			
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
	Internal	100	250	-20		
	External	15	250	-20		
	Ring Pro	operties				
Ring type			Flat bar			
Description			1/4x1.5 Flat Bar			
Corrosion allowa	ance	0"				
Distance from rin	ng neutral axis to datum	60"				
Distance to previ	ous support		12"			
Distance to next	support		16"			
Internal ring			No			
Max depth to thic	ckness ratio		12			
Ring distance to	centroid		0.75"			
Ring area		0.375 in ²				
Ring inertia		0.0703 in ⁴				
	Wel	ds				
Weld configurati	on	Staggered intermittent				
Fillet weld leg si	ze	0.25"				
Length of individ	lual weld segments		3"			
Spacing between	n toes of weld segments		1.5"			
Vessel thickness	at weld location, new	0.1875"				
Vessel corrosion	allowance at weld location	0"				
Stiffener thickne	ss at weld location		0.25"			

UCS-66 Material Toughness Requirements	
Governing thickness, t _g =	0.25"
Exemption temperature from Fig UCS-66 Curve B =	-20°F
$t_r = \frac{133.79 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 133.79} =$	0.0806"
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0806 \cdot 1}{0.1875 - 0} =$	0.4298
Reduction in MDMT, T _R from Fig UCS-66.1 =	77.4°F
$MDMT = \max [MDMT - T_R, -55] = \max [-20 - 77.4, -55] =$	-55°F
Material is exempt from impact testing at the Design MDMT of -	20°F.

External Pressure, (Corroded & at 250°F) UG-29(a)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$
$$\frac{D_o}{t} = \frac{24.375}{0.0651} = 374.194$$

From Table G: A = 2.908E-04

From Table CS-2: B = 4,216.38 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = \frac{4 \cdot 4,216.38}{3 \cdot (24.375 \ / \ 0.06514)} = 15.02 \text{ psi}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s \ / \ L_s}\right) = \frac{3}{4} \cdot \left(\frac{15 \cdot 24.375}{0.0651 + 0.375 \ / \ 14}\right) = 2,984 \text{ psi}$$

From Table CS-2: A = 0.00020549 (ring, 250°F)

$$J_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$

$$= \frac{24.375^{2} \cdot 14 \cdot (0.0651 + 0.375 / 14) \cdot 0.00020549}{10.9}$$

$$= 0.0144 \text{ in}^{4}$$

I' for the composite corroded shell-ring cross section is 0.2159 in⁴

As $l' \ge l_s' a 1/4x1.5$ Flat Bar stiffener is adequate for an external pressure of 15 psi.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [0.25, 0.1875 - 0 - 0, 0.25] + 0 = 0.1875 in

The fillet weld size of 0.25 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 15 \cdot 14 = 210 \text{ lb}_f/\text{in}$ Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 15 \cdot 14 \cdot 24.375 = 51.19 \text{ lb}_f$ First moment of area, $Q = 0.44 \cdot 0.3878 = 0.171 \text{ in}^3$

Weld shear flow, $q=rac{V\cdot Q}{I^{'}}=40.5462~~{
m lb}_f/{
m in}$

Combined weld load, $f_w = \sqrt{210^2 + 40.5462^{-2}} = 213.88 ~~{
m lb}_f/{
m in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 20,000 = 11,000$ psi

Fillet weld size required to resist radial pressure and shear

 $t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{213.88 \cdot (3+1.5)}{11,000 \cdot 6} + 0 = 0.0146$ in

The fillet weld size of 0.25 in is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 250°F) UG-29(a)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$

$$\frac{D_o}{t} = \frac{24.375}{0.1875} = 130$$

From Table G: A = 0.0014

From Table CS-2: B = 13,613.57 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = rac{4 \cdot 13,613.57}{3 \cdot (24.375 \ / \ 0.1875)} = 139.63 ~{
m psi}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s / L_s}\right) = \frac{3}{4} \cdot \left(\frac{139.63 \cdot 24.375}{0.1875 + 0.375 / 14}\right) = 11,912 \text{ psi}$$

From Table CS-2: A = 0.00092182 (ring, 250°F)

$$I_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$
$$= \frac{24.375^{2} \cdot 14 \cdot (0.1875 + 0.375 / 14) \cdot 0.00092182}{10.9}$$
$$= 0.1507 \text{ in}^{4}$$

I' for the composite corroded shell-ring cross section is 0.2159 in⁴

As $I' >= I_s'$ a 1/4x1.5 Flat Bar stiffener is adequate for an external pressure of 139.63 psi.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [0.25, 0.1875 - 0 - 0, 0.25] + 0 = 0.1875 in

The fillet weld size of 0.25 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 139.63 \cdot 14 = 1,954.77$ lb_f/in

Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 139.63 \cdot 14 \cdot 24.375 = 476.47$ lb $_{f}$

First moment of area, $Q = 0.44 \cdot 0.3878 = 0.171$ in³

Weld shear flow, $q=rac{V\cdot Q}{I^{'}}=377.4209~~{
m lb}_f/{
m in}$

Combined weld load, $f_w = \sqrt{1,\!954.7687^{-2}+377.4209^{-2}} = 1,\!990.87~{
m lb}_f/{
m in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 20,000 = 11,000$ psi

Fillet weld size required to resist radial pressure and shear

$$t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{1,990.87 \cdot (3 + 1.5)}{11,000 \cdot 6} + 0 = 0.1357$$
 in

The fillet weld size of 0.25 in is adequate to resist radial pressure and shear.

Cylinder #1

	ASME Sec	tion VIII Divisio	n 1, 2021 Edition			
Com	ponent	Cylinder				
Ма	iterial	SA	SA-516 70 (II-D p. 20, In. 45)			
Impact Tested	Normalized	Fine Grain Practice	Fine Grain Practice PWHT Maximize MDMT/ No MAWP			
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Int	ernal	100	250	20		
Ext	ternal	15	250	-20		
		Static Liquid	Head			
Cor	ndition	P _s (psi)	H _s (in)	SG		
Оре	erating	2.17	60	1		
Test horizontal		1.09 30.1875 1				
		Dimension	เร			
Inner	Diameter	24"				
Le	ength	36"				
Nominal	Thickness		0.1875"			
Corrosion	Inner		0"			
Contrasion	Outer		0"			
		Weight and Ca	pacity			
		Wei	ght (lb)	Capacity (US gal)		
1	lew	143.33 70		143.33		70.5
Cor	roded	143.33 70.5				
		Radiograp	hy			
Longitu	dinal seam	Full UW-11(a) Type 1				
Top Circum	ferential seam	Full UW-11(a) Type 1				
Bottom Circu	om Circumferential seam Full UW-11(a) Type 1					

Results Summary	
Governing condition	External pressure
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"
Design thickness due to internal pressure (t)	0.0615"
Design thickness due to external pressure (t_e)	<u>0.0651"</u>
Maximum allowable working pressure (MAWP)	<u>307.43 psi</u>
Maximum allowable pressure (MAP)	<u>309.6 psi</u>
Maximum allowable external pressure (MAEP)	<u>139.63 psi</u>
Rated MDMT	-55 °F

UCS-66 Material Toughness Requirements	
Governing thickness, t _g =	0.1875"
Exemption temperature from Fig UCS-66 Curve B =	-20°F
$t_r = \frac{135.09 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 135.09} =$	0.0814"
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0814 \cdot 1}{0.1875 - 0} =$	0.434
Reduction in MDMT, T _R from Fig UCS-66.1 =	75.7°F
$MDMT = \max [MDMT - T_R, -55] = \max [-20 - 75.7, -55] =$	-55°F
Material is exempt from impact testing at the Design MDMT of -	20°F.

Design thickness, (at 250 °F) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{102.17 \cdot 12}{20,000 \cdot 1.00 - 0.60 \cdot 102.17} + 0 = \underline{0.0615}"$

Maximum allowable working pressure, (at 250 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{20,000 \cdot 1.00 \cdot 0.1875}{12 + 0.60 \cdot 0.1875} - 2.17 = \underline{307.43} \text{ psi}$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 0.1875}{12 + 0.60 \cdot 0.1875} = \underline{309.6} \text{ psi}$

External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$

$$D = 24.375$$

 $\frac{D_o}{t} = \frac{24.375}{0.0651} = 374.4084$

From table G: A = 0.000291

From table CS-2: B = 4,212.0919 psi

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4,212.09}{3 \cdot (24.375/0.0651)} = 15 \ \mathrm{psi}$

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.0651 + 0 = 0.0651$ "

Maximum Allowable External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$
$$\frac{D_o}{t} = \frac{24.375}{0.1875} = 130.0000$$

From table G: A = 0.001425

From table CS-2: B = 13,613.5745 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 13,613.57}{3 \cdot (24.375/0.1875)} = rac{139.63}{139.63} \, \mathrm{psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.1875}{12.0938}\right) \cdot \left(1 - \frac{12.0938}{\infty}\right) = 0.7752\%$$

The extreme fiber elongation does not exceed 5%.

Nozzle #1 (N1)

ASME Section VIII Division	on 1, 2021 Edition	
	<u></u> Q.1875 <u></u> Q.1875 <u></u> Q.1875 T	
Note: round inside edges per UG-76(c)		
Location and Or	ientation	
Located on	Cylinder #1	
Orientation	0°	
Nozzle center line offset to datum line	23"	
End of nozzle to shell center	18.1875"	
Passes through a Category A joint	No	
Nozzle		
Access opening	No	
Material specification	SA-105 (II-D p. 20, In. 31)	
Inside diameter, new	6.065"	
Nominal wall thickness	0.28"	
Corrosion allowance	0"	
Projection available outside vessel, Lpr	6"	
Local vessel minimum thickness	0.1875"	
Liquid static head included	1.45 psi	
Welds		
Inner fillet, Leg ₄₁	0.1875"	
Nozzle to vessel groove weld	0.1875"	
Radiograp	hy	
Longitudinal seam	Seamless No RT	
Circumferential seam	Spot UW-11(a)(5)(b) only Type 1	

UCS-66 Material Toughness Requirements Nozzle At Interse	ection
Governing thickness, t _g =	0.1875"
Exemption temperature from Fig UCS-66 Curve B =	-20°F
$t_r = rac{134.37\cdot 12}{20,000\cdot 1 - 0.6\cdot 134.37} =$	0.081"
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.081 \cdot 1}{0.1875 - 0} =$	0.4317
Reduction in MDMT, T _R from Fig UCS-66.1 =	76.6°F
$MDMT = \max [MDMT - T_R, -55] = \max [-20 - 76.6, -55] =$	-55°F
Material is exempt from impact testing at the Design MDMT of -	20°F.

UCS-66 Material Toughness Requirements Noz	zle
$t_r = {134.37 \cdot 3.0325 \over 20,000 \cdot 1 - 0.6 \cdot 134.37} =$	0.0205"
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0205 \cdot 1}{0.28 - 0} =$	0.0731
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F
Material is exempt from impact testing at the Design MDM	T of -20°F.

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (in ²)				UG-45 Sum	mary (in)			
	For P = 101.45 psi @ 250 °F The opening is adequately reinforced			The nozzle pas	ses UG-45			
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>0.3703</u>	<u>1.0502</u>	<u>0.7669</u>	<u>0.2481</u>	-		<u>0.0352</u>	<u>0.0625</u>	0.28

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary			
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status
Nozzle to shell fillet (Leg ₄₁)	<u>0.1313</u>	0.1313	weld size is adequate

Calculations for internal pressure 101.45 psi @ 250 °F

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

= max
$$[6.065, 3.0325 + (0.28 - 0) + (0.1875 - 0)]$$

= 6.065 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (0.1875 0), \ 2.5 \cdot (0.28 0) + 0 \right]$
- = 0.4688 in

Nozzle required thickness per UG-27(c)(1)

=

 $\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P}$

- 20,000 \cdot 1 0.6 \cdot 101.4451
- = 0.0154 in

Required thickness t_r from UG-37(a)

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{101.4451 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 101.4451}$$

= 0.0611 in

Area required per UG-37(c)

Allowable stresses: S_n = 20,000, S_v = 20,000 psi

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_n}$ = 1

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

= 6.065 \cdot 0.0611 \cdot 1 + 2 \cdot 0.28 \cdot 0.0611 \cdot 1 \cdot (1 - 1)
= 0.3703 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = <u>0.7669</u> in²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= 6.065 \cdot (1 \cdot 0.1875 1 \cdot 0.0611) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.0611) \cdot (1 1)$
- = 0.7669 in²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= 2 \cdot (0.1875 + 0.28) \cdot (1 \cdot 0.1875 1 \cdot 0.0611) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.0611) \cdot (1 1)$
- = 0.1182 in²

 A_2 = smaller of the following= <u>0.2481</u> in²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.28 0.0154) \cdot 1 \cdot 0.1875$
- = 0.2481 in²
- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.28 0.0154) \cdot 1 \cdot 0.28$
- = 0.3704 in²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = 0.1875² · 1
- = 0.0352 in²

 $Area = A_1 + A_2 + A_{41}$

- $= 0.7669 {+} 0.2481 {+} 0.0352$
- = <u>1.0502</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

Available nozzle wall thickness new, $t_{\textrm{n}}$ = 0.28 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)					UG-45 Sum	nmary (in)		
	For P = 192.25 psi @ 250 °F The opening is adequately reinforced			The nozzle pa	isses UG-45			
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
<u>0.7037</u>	<u>0.7037</u>	<u>0.4335</u>	<u>0.235</u>		-	<u>0.0352</u>	<u>0.116</u>	0.28

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary			
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status
Nozzle to shell fillet (Leg ₄₁)	<u>0.1313</u>	0.1313	weld size is adequate

Calculations for internal pressure 192.25 psi @ 250 °F

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = max [6.065, 3.0325 + (0.28 0) + (0.1875 0)]
- = 6.065 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.1875 0), 2.5 \cdot (0.28 0) + 0]$
- = 0.4688 in

Nozzle required thickness per UG-27(c)(1)

$$t_{\rm rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

 $= \frac{192.2523 \cdot 3.0325}{192.2523 \cdot 3.0325}$

- $20,000 \cdot 1 0.6 \cdot 192.2523$
- = 0.0293 in

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{192.2523 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 192.2523}$$
$$= 0.116 \text{ in}$$

Area required per UG-37(c)

Allowable stresses: S_n = 20,000, S_v = 20,000 psi

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_n}$ = 1

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

= 6.065 \cdot 0.116 \cdot 1 + 2 \cdot 0.28 \cdot 0.116 \cdot 1 \cdot (1 - 1)
= 0.7037 in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = 0.4335 in²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= 6.065 \cdot (1 \cdot 0.1875 1 \cdot 0.116) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.116) \cdot (1 1)$
- = 0.4335 in²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= 2 \cdot (0.1875 + 0.28) \cdot (1 \cdot 0.1875 1 \cdot 0.116) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.116) \cdot (1 1)$
- = 0.0668 in²

 A_2 = smaller of the following= <u>0.235</u> in²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.28 0.0293) \cdot 1 \cdot 0.1875$
- = 0.235 in²
- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.28 0.0293) \cdot 1 \cdot 0.28$
- = 0.351 in²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = 0.1875² · 1
- = 0.0352 in²

 $Area = A_1 + A_2 + A_{41}$

- = 0.4335+0.235+0.0352
- = <u>0.7037</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{192.2523\cdot 3.0325}{20,000\cdot 1-0.6\cdot 192.2523} \ + 0$
	=	0.0293 in
t_a	=	$\max \; [t_{a { m UG-} 27} \; , \; t_{a { m UG-} 22} \;]$
	=	$\max[0.0293, 0]$
	=	0.0293 in
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{192.2523 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 192.2523} + 0$
	=	0.116 in
t_{b1}	=	$\max \left[t_{b1} , \ t_{b\mathrm{UG16}} \right]$
	=	$\max[0.116, 0.0625]$
	=	0.116 in
t_b	=	$\min[t_{b3}, t_{b1}]$
	=	min [0.245, 0.116]
	=	0.116 in
$t_{ m UG-45}$	=	$\max [t_a, t_b]$
	=	$\max[0.0293, 0.116]$
	=	<u>0.116</u> in

Available nozzle wall thickness new, t_n = 0.28 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)					UG-45 Sum	nmary (in)		
For P = 192.25 psi @ 70 °F The opening is adequately reinforced				The nozzle pa	isses UG-45			
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
<u>0.7037</u>	<u>0.7037</u>	<u>0.4335</u>	<u>0.235</u>			0.0352	<u>0.116</u>	0.28

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

Calculations for internal pressure 192.25 psi @ 70 °F

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_n + (t_n - C_n) + (t - C)]$$

- $= \max \left[6.065, \ 3.0325 + (0.28 0) + (0.1875 0) \right]$
- = 6.065 in

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (0.1875 0), \ 2.5 \cdot (0.28 0) + 0 \right]$
- = 0.4688 in

Nozzle required thickness per UG-27(c)(1)

t _{rn}	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$
	_	$192.2517 \cdot 3.0325$
	_	$20,000 \cdot 1 - 0.6 \cdot 192.2517$

= 0.0293 in

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{192.2517 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 192.2517}$
= 0.116 in

Area required per UG-37(c)

Allowable stresses: S_n = 20,000, S_v = 20,000 psi

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 1
 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 $\mathsf{A} = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$

- $= 6.065 \cdot 0.116 \cdot 1 + 2 \cdot 0.28 \cdot 0.116 \cdot 1 \cdot (1-1)$
- = <u>0.7037</u> in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = 0.4335 in²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= 6.065 \cdot (1 \cdot 0.1875 1 \cdot 0.116) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.116) \cdot (1 1)$
- = 0.4335 in²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1-f_{r1})$
- $= 2 \cdot (0.1875 + 0.28) \cdot (1 \cdot 0.1875 1 \cdot 0.116) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.116) \cdot (1 1)$
- = 0.0668 in²

 A_2 = smaller of the following= <u>0.235</u> in²

- = $5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.28 0.0293) \cdot 1 \cdot 0.1875$
- = 0.235 in²
- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.28 0.0293) \cdot 1 \cdot 0.28$
- = 0.351 in²

$$A_{41} = Leg^2 \cdot f_{r2}$$

- = $0.1875^{2} \cdot 1$
- = 0.0352 in²

 $Area = A_1 + A_2 + A_{41}$

- $= 0.4335 \!+\! 0.235 + 0.0352$
- = <u>0.7037</u> in²

As Area >= A the reinforcement is adequate.

UG-45 Nozzle Neck Thickness Check

$$t_{a\text{UG-27}} = rac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + ext{Corrosion}$$

 $= rac{192.2517 \cdot 3.0325}{20,000 \cdot 1 - 0.6 \cdot 192.2517} + 0$
 $= 0.0293 ext{ in}$

$$\begin{array}{rcl} t_a & = & \max \left[t_{a \text{UG-27}}, \ t_{a \text{UG-22}} \right] \\ & = & \max \left[0.0293, \ 0 \right] \\ & = & 0.0293 \text{ in} \end{array}$$

$$\begin{array}{rcl} t_{\text{b}1} & = & \frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion} \\ & = & \frac{192.2517 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 192.2517} + 0 \\ & = & 0.116 \text{ in} \end{array}$$

$$\begin{array}{rcl} t_{b1} & = & \max \left[t_{b1}, \ t_{b\text{UG16}} \right] \\ & = & \max \left[0.116, \ 0.0625 \right] \\ & = & 0.116 \text{ in} \end{array}$$

$$\begin{array}{rcl} t_b & = & \min \left[t_{b3}, \ t_{b1} \right] \\ & = & \min \left[0.245, \ 0.116 \right] \\ & = & \max \left[0.116 \text{ in} \end{array}$$

$$\begin{array}{rcl} t_{\text{UG-45}} & = & \max \left[t_a, \ t_b \right] \\ & = & \max \left[0.0293, \ 0.116 \right] \\ & = & 0.116 \text{ in} \end{array}$$

Available nozzle wall thickness new, $t_{\rm n}$ = 0.28 in

The nozzle neck thickness is adequate.

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (in ²)					UG-45 Sum	mary (in)		
For Pe = 15 psi @ 250 °F The opening is adequately reinforced				The nozzle pas	ses UG-45			
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
<u>0.1974</u>	<u>1.0205</u>	<u>0.7424</u>	<u>0.2429</u>			<u>0.0352</u>	<u>0.0625</u>	0.28

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description Required weld throat size (in) Actual weld throat size (in) Status					
Nozzle to shell fillet (Leg ₄₁)	<u>0.1313</u>	0.1313	weld size is adequate		

Calculations for external pressure 15 psi @ 250 °F

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

$$= \max \left[6.065, \ 3.0325 + (0.28 - 0) + (0.1875 - 0) \right]$$

= 6.065 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min \left[2.5 \cdot (t - C), \ 2.5 \cdot (t_{n} - C_{n}) + t_{e} \right]$$

- = min $[2.5 \cdot (0.1875 0), 2.5 \cdot (0.28 0) + 0]$
- = 0.4688 in

Nozzle required thickness per UG-28 trn = 0.0209 in

From UG-37(d)(1) required thickness t_r = 0.0651 in

Area required per UG-37(d)(1)

Allowable stresses: S_n = 20,000, S_v = 20,000 psi

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

- $= 0.5 \cdot (6.065 \cdot 0.0651 \cdot 1 + 2 \cdot 0.28 \cdot 0.0651 \cdot 1 \cdot (1-1))$
- = <u>0.1974</u> in²

Area available from FIG. UG-37.1

 A_1 = larger of the following = 0.7424 in²

 $= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$

- = $6.065 \cdot (1 \cdot 0.1875 1 \cdot 0.0651) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.0651) \cdot (1 1)$
- = 0.7424 in²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r_1})$
- $= 2 \cdot (0.1875 + 0.28) \cdot (1 \cdot 0.1875 1 \cdot 0.0651) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.0651) \cdot (1 1)$
- = 0.1144 in²

A_2 = smaller of the following= <u>0.2429</u> in²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.28 0.0209) \cdot 1 \cdot 0.1875$
- = 0.2429 in²
- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.28 0.0209) \cdot 1 \cdot 0.28$
- = 0.3627 in²

$$A_{41} = Leg^2 \cdot f_{r2}$$

- = 0.1875 $^{2} \cdot 1$
- = <u>0.0352</u> in²

 $Area = A_1 + A_2 + A_{41}$

- $= 0.7424 {+} 0.2429 {+} 0.0352$
- = <u>1.0205</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_n, t] = 0.1875$ in $t_{c(\min)} = \min [0.25, 0.7 \cdot t_{\min}] = 0.1313$ in

 $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	0.0209 in
t_a	=	$\max \left[t_{a\mathrm{UG-28}} , \; t_{a\mathrm{UG-22}} ight]$
	=	$\max [0.0209, 0]$
	=	0.0209 in

t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{15\cdot 12}{20,\!000\cdot 1-0.6\cdot 15}+0$
	=	0.009 in
t_{b2}	=	$\max\left[t_{b2}, \ t_{b\mathrm{UG16}}\right]$
	=	$\max [0.009, 0.0625]$
	=	0.0625 in
t_b	=	$\min \; [t_{b3}, \; t_{b2}]$
	=	$\min\ [0.245,\ \ 0.0625]$
	=	0.0625 in
$t_{ m UG-45}$	=	$\max\ [t_a,\ t_b]$
	=	$\max [0.0209, 0.0625]$
	=	<u>0.0625</u> in

Available nozzle wall thickness new, $t_n = 0.28$ in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{6.4588}{6.625} = 0.9749$$
$$\frac{D_o}{t} = \frac{6.625}{0.0209} = 316.7207$$

From table G: A = 0.000246

From table CS-2: B = 3,563.1367 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 3,563.14}{3 \cdot (6.625/0.0209)} = 15$$
 psi

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.0209 + 0 = 0.0209$ "

Reinforcement Calculations for MAEP

	UG-37 Area Calculation Summary (in ²)					UG-45 Sum	ımary (in)		
	For Pe = 104.69 psi @ 250 °F The opening is adequately reinforced				The nozzle pa	sses UG-45			
ſ	A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
	<u>0.464</u>	<u>0.464</u>	0.2092	<u>0.2196</u>			0.0352	<u>0.063</u>	0.28

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status		
Nozzle to shell fillet (Leg ₄₁)	<u>0.1313</u>	0.1313	weld size is adequate		

Calculations for external pressure 104.69 psi @ 250 °F

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = max [6.065, 3.0325 + (0.28 0) + (0.1875 0)]
- = 6.065 in

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (0.1875 0), 2.5 \cdot (0.28 0) + 0]$
- = 0.4688 in

Nozzle required thickness per UG-28 trn = 0.0458 in

From UG-37(d)(1) required thickness $t_r = 0.153$ in

Area required per UG-37(d)(1)

Allowable stresses: S_n = 20,000, S_v = 20,000 psi

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_n}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

- $= 0.5 \cdot (6.065 \cdot 0.153 \cdot 1 + 2 \cdot 0.28 \cdot 0.153 \cdot 1 \cdot (1-1))$
- $= 0.464 \text{ in}^2$

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>0.2092</u> in²

 $= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$

- $= 6.065 \cdot (1 \cdot 0.1875 1 \cdot 0.153) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.153) \cdot (1 1)$
- = 0.2092 in²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1-f_{r1})$
- $= 2 \cdot (0.1875 + 0.28) \cdot (1 \cdot 0.1875 1 \cdot 0.153) 2 \cdot 0.28 \cdot (1 \cdot 0.1875 1 \cdot 0.153) \cdot (1 1)$
- = 0.0323 in²

A_2 = smaller of the following= <u>0.2196</u> in²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= 5 \cdot (0.28 0.0458) \cdot 1 \cdot 0.1875$
- = 0.2196 in²
- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= 5 \cdot (0.28 0.0458) \cdot 1 \cdot 0.28$
- = 0.3279 in²

$$A_{41} = Leg^2 \cdot f_{r2}$$

- = 0.1875 $^{2} \cdot 1$
- = <u>0.0352</u> in²

 $Area = A_1 + A_2 + A_{41}$

- $= \qquad 0.2092 {+} 0.2196 {+} 0.0352$
- = <u>0.464</u> in²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [0.75, t_n, t] = 0.1875$ in $t_{c(\min)} = \min [0.25, 0.7 \cdot t_{\min}] = 0.1313$ in

 $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 0.1875 = 0.1313$ in

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	0.0458 in
t_a	=	$\max \left[t_{a\mathrm{UG-28}}, \; t_{a\mathrm{UG-22}} ight]$
	=	$\max \ [0.0458, \ 0]$
	=	0.0458 in

t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{104.6932\cdot 12}{20,000\cdot 1-0.6\cdot 104.6932}+0$
	=	0.063 in
t_{b2}	=	$\max [t_{b2}, t_{b{ m UG16}}]$
	=	$\max\ [0.063,\ 0.0625]$
	=	0.063 in
t_b	=	$\min \; [t_{b3}, \; t_{b2}]$
	=	$\min\ [0.245,\ 0.063]$
	=	0.063 in
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max\ [0.0458,\ 0.063]$
	=	<u>0.063</u> in

Available nozzle wall thickness new, $t_n = 0.28$ in

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{6.4588}{6.625} = 0.9749$$
$$\frac{D_o}{t} = \frac{6.625}{0.0458} = 144.7997$$

From table G: A = 0.000795

From table CS-2: B = 11,369.6111 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 11,369.61}{3 \cdot (6.625/0.0458)} = 104.69 ~{
m psi}$$

Design thickness for external pressure $P_a = 104.69$ psi

 $t_a = t + \text{Corrosion} = 0.0458 + 0 = 0.0458$ "

Rings #1 (Ring #2 in Group)

	ASME Section VIII Division 1, 2021 Edition						
	Component	Stiffening Ring					
	Material	SA-51	6 70 (II-D p. 20, ln. 4	45)			
	Attached To		Cylinder #1				
Impact Tested	Normalized	Fine Grain Practice PWHT					
No	No	No No					
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)			
	Internal	100	250	-20			
	External	15	250	-20			
	Ring Pro	operties					
Ring type			Flat bar				
Description			1/4x1.5 Flat Bar				
Corrosion allowa	ance	0"					
Distance from rin	ng neutral axis to datum	28"					
Distance to previ	ous support		16"				
Distance to next	support		16"				
Internal ring			No				
Max depth to thic	ckness ratio		12				
Ring distance to	centroid		0.75"				
Ring area			0.375 in ²				
Ring inertia		0.0703 in ⁴					
	Wel	ds					
Weld configurati	on	Sta	nggered intermittent				
Fillet weld leg si	ze	0.25"					
Length of individ	lual weld segments		3"				
Spacing between	n toes of weld segments		1.5"				
Vessel thickness	at weld location, new		0.1875"				
Vessel corrosion	allowance at weld location		0"				
Stiffener thickne	ss at weld location		0.25"				

UCS-66 Material Toughness Requirements	
Governing thickness, t _g =	0.25"
Exemption temperature from Fig UCS-66 Curve B =	-20°F
$t_r = \frac{135.09 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 135.09} =$	0.0814"
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0814 \cdot 1}{0.1875 - 0} =$	0.434
Reduction in MDMT, T _R from Fig UCS-66.1 =	75.7°F
$MDMT = \max [MDMT - T_R, -55] = \max [-20 - 75.7, -55] =$	-55°F
Material is exempt from impact testing at the Design MDMT of -	20°F.

External Pressure, (Corroded & at 250°F) UG-29(a)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$
$$\frac{D_o}{t} = \frac{24.375}{0.0651} = 374.194$$

From Table G: A = 2.908E-04

From Table CS-2: B = 4,216.38 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = rac{4 \cdot 4,216.38}{3 \cdot (24.375 \ / \ 0.06514)} = 15.02 ~{
m psi}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s \ / \ L_s}\right) = \frac{3}{4} \cdot \left(\frac{15 \cdot 24.375}{0.0651 + 0.375 \ / \ 16}\right) = 3,097 \text{ psi}$$

From Table CS-2: A = 0.00021330 (ring, 250°F)

$$J_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$

$$= \frac{24.375^{2} \cdot 16 \cdot (0.0651 + 0.375 / 16) \cdot 0.00021330}{10.9}$$

$$= 0.0165 \text{ in}^{4}$$

I' for the composite corroded shell-ring cross section is 0.2159 in⁴

As $l' \ge l_s' a 1/4x1.5$ Flat Bar stiffener is adequate for an external pressure of 15 psi.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [0.25, 0.1875 - 0 - 0, 0.25] + 0 = 0.1875 in

The fillet weld size of 0.25 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 15 \cdot 16 = 240 \ \text{lb}_f/\text{in}$ Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 15 \cdot 16 \cdot 24.375 = 58.5 \ \text{lb}_f$ First moment of area, $Q = 0.44 \cdot 0.3878 = 0.171 \ \text{in}^3$

Weld shear flow, $q = rac{V \cdot Q}{I^{'}} = 46.3385 ~ \mathrm{lb}_f/\mathrm{in}$

Combined weld load, $f_w = \sqrt{240^2 + 46.3385^2} = 244.43$ $\mathrm{lb}_f/\mathrm{in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 20,000 = 11,000$ psi

Fillet weld size required to resist radial pressure and shear

 $t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{244.43 \cdot (3 + 1.5)}{11,000 \cdot 6} + 0 = 0.0167$ in

The fillet weld size of 0.25 in is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 250°F) UG-29(a)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$

$$\frac{D_o}{t} = \frac{24.375}{0.1875} = 130$$

From Table G: A = 0.0014

From Table CS-2: B = 13,613.57 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = rac{4 \cdot 13,613.57}{3 \cdot (24.375 \ / \ 0.1875)} = 139.63 ~{
m psi}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s / L_s}\right) = \frac{3}{4} \cdot \left(\frac{139.63 \cdot 24.375}{0.1875 + 0.375 / 16}\right) = 12,101 \text{ psi}$$

From Table CS-2: A = 0.00095942 (ring, 250°F)

$$I_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$
$$= \frac{24.375^{2} \cdot 16 \cdot (0.1875 + 0.375 / 16) \cdot 0.00095942}{10.9}$$
$$= 0.1765 \text{ in}^{4}$$

I' for the composite corroded shell-ring cross section is 0.2159 in⁴

As $I' >= I_s'$ a 1/4x1.5 Flat Bar stiffener is adequate for an external pressure of 139.63 psi.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [0.25, 0.1875 - 0 - 0, 0.25] + 0 = 0.1875 in

The fillet weld size of 0.25 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 139.63 \cdot 16 = 2,234.02$ lb_f/in

Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 139.63 \cdot 16 \cdot 24.375 = 544.54$ lb $_{f}$

First moment of area, $Q = 0.44 \cdot 0.3878 = 0.171$ in³

Weld shear flow, $q = rac{V \cdot Q}{I'} = 431.3382 \ \ \mathrm{lb}_f/\mathrm{in}$

Combined weld load, $f_w = \sqrt{2,\!234.0214^{-2} + 431.3382^{-2}} = 2,\!275.28~{
m lb}_f/{
m in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 20,000 = 11,000$ psi

Fillet weld size required to resist radial pressure and shear

$$t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{2,275.28 \cdot (3 + 1.5)}{11,000 \cdot 6} + 0 = 0.1551 ext{ in}$$

The fillet weld size of 0.25 in is adequate to resist radial pressure and shear.

Rings #1

ASME Section VIII Division 1, 2021 Edition				
Component		Stiffening Ring		
Material		SA-516 70 (II-D p. 20, ln. 45)		
Attached To			Cylinder #1	
Impact Tested	Normalized	Fine Grain Practice	PWHT	
No	No	No	No	
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)
	Internal	100	250	-20
	External	15	250	-20
	Ring Pro	operties		
Ring type		Flat bar		
Description			1/4x1.5 Flat Bar	
Corrosion allowa	ance		0"	
Distance from rin	ng neutral axis to datum	12"		
Distance to previous support		16"		
Distance to next support		16"		
Internal ring		No		
Max depth to this	ckness ratio	12		
Ring distance to centroid		0.75"		
Ring area		0.375 in ²		
Ring inertia		0.0703 in ⁴		
	Wel	ds		
Weld configurati	on	Staggered intermittent		
Fillet weld leg size		0.25"		
Length of individ	lual weld segments	3"		
Spacing between	n toes of weld segments	1.5"		
Vessel thickness at weld location, new		0.1875"		
Vessel corrosion	allowance at weld location	0"		
Stiffener thickne	ss at weld location	0.25"		

UCS-66 Material Toughness Requirements			
Governing thickness, t _g =	0.25"		
Exemption temperature from Fig UCS-66 Curve B =			
$t_r = \frac{135.09 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 135.09} =$	0.0814"		
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0814 \cdot 1}{0.1875 - 0} =$	0.434		
Reduction in MDMT, T _R from Fig UCS-66.1 =	75.7°F		
$MDMT = \max [MDMT - T_R, -55] = \max [-20 - 75.7, -55] =$	-55°F		
Material is exempt from impact testing at the Design MDMT of -20°F.			

External Pressure, (Corroded & at 250°F) UG-29(a)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$
$$\frac{D_o}{t} = \frac{24.375}{0.0651} = 374.194$$

From Table G: A = 2.908E-04

From Table CS-2: B = 4,216.38 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = rac{4 \cdot 4,216.38}{3 \cdot (24.375 \ / \ 0.06514)} = 15.02 ~{
m psi}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s \ / \ L_s}\right) = \frac{3}{4} \cdot \left(\frac{15 \cdot 24.375}{0.0651 + 0.375 \ / \ 16}\right) = 3,097 \text{ psi}$$

From Table CS-2: A = 0.00021330 (ring, 250°F)

$$I_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$

$$= \frac{24.375^{2} \cdot 16 \cdot (0.0651 + 0.375 / 16) \cdot 0.00021330}{10.9}$$

$$= 0.0165 \text{ in}^{4}$$

I' for the composite corroded shell-ring cross section is 0.2159 in⁴

As $l' \ge l_s' a 1/4x1.5$ Flat Bar stiffener is adequate for an external pressure of 15 psi.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [0.25, 0.1875 - 0 - 0, 0.25] + 0 = 0.1875 in

The fillet weld size of 0.25 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 15 \cdot 16 = 240 \ \text{lb}_f/\text{in}$ Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 15 \cdot 16 \cdot 24.375 = 58.5 \ \text{lb}_f$ First moment of area, $Q = 0.44 \cdot 0.3878 = 0.171 \ \text{in}^3$

Weld shear flow, $q = rac{V \cdot Q}{I'} = 46.3385 ~ \mathrm{lb}_f/\mathrm{in}$

Combined weld load, $f_w = \sqrt{240^2 + 46.3385^2} = 244.43$ $\mathrm{lb}_f/\mathrm{in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 20,000 = 11,000$ psi

Fillet weld size required to resist radial pressure and shear

 $t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{244.43 \cdot (3 + 1.5)}{11,000 \cdot 6} + 0 = 0.0167$ in

The fillet weld size of 0.25 in is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 250°F) UG-29(a)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$

$$\frac{D_o}{t} = \frac{24.375}{0.1875} = 130$$

From Table G: A = 0.0014

From Table CS-2: B = 13,613.57 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = rac{4 \cdot 13,613.57}{3 \cdot (24.375 \ / \ 0.1875)} = 139.63 ~{
m psi}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s / L_s}\right) = \frac{3}{4} \cdot \left(\frac{139.63 \cdot 24.375}{0.1875 + 0.375 / 16}\right) = 12,101 \text{ psi}$$

From Table CS-2: A = 0.00095942 (ring, 250°F)

$$I_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$
$$= \frac{24.375^{2} \cdot 16 \cdot (0.1875 + 0.375 / 16) \cdot 0.00095942}{10.9}$$
$$= 0.1765 \text{ in}^{4}$$

I' for the composite corroded shell-ring cross section is 0.2159 in⁴

As $I' >= I_s'$ a 1/4x1.5 Flat Bar stiffener is adequate for an external pressure of 139.63 psi.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [0.25, 0.1875 - 0 - 0, 0.25] + 0 = 0.1875 in

The fillet weld size of 0.25 in is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 139.63 \cdot 16 = 2,234.02$ lb_f/in

Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 139.63 \cdot 16 \cdot 24.375 = 544.54$ lb $_{f}$

First moment of area, $Q = 0.44 \cdot 0.3878 = 0.171$ in³

Weld shear flow, $q = rac{V \cdot Q}{I'} = 431.3382 \ \ \mathrm{lb}_f/\mathrm{in}$

Combined weld load, $f_w = \sqrt{2,\!234.0214^{-2} + 431.3382^{-2}} = 2,\!275.28~{
m lb}_f/{
m in}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 20,000 = 11,000$ psi

Fillet weld size required to resist radial pressure and shear

$$t_w = rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = rac{2,275.28 \cdot (3 + 1.5)}{11,000 \cdot 6} + 0 = 0.1551 ext{ in}$$

The fillet weld size of 0.25 in is adequate to resist radial pressure and shear.

Straight Flange on Ellipsoidal Head #2

ASME Section VIII Division 1, 2021 Edition						
Component		Cylinder				
Material		SA-516 70 (II-D p. 20, In. 45)				
Impact Tested	Normalized	Fine Grain Practice	Fine Grain Practice PWHT Maximize MDMT/ No MAWP			
No	No	No	No	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Inte	ernal	150	250	-20		
Ext	ernal	15	250	-20		
Static Liquid Head						
Con	dition	P _s (psi)	H _s (in)	SG		
Оре	rating	2.24	62	1		
Test horizontal		1.09	30.1875	1		
Dimensions						
Inner Diameter 24"						
Length		2"				
Nominal Thickness		0.1875"				
Corrosion	Inner		0"			
	Outer		0"			
		Weight and C	Capacity			
		Weight (Ib) Capacity (US		Capacity (US gal)		
New		8.06 3.92				
Corroded		8.06 3.92				
		Radiogra	phy			
Longitud	dinal seam		Seamless No R	Г		
Top Circumferential seam		Full UW-11(a) Type 1				

Results Summary			
Governing condition Internal pressure			
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"		
Design thickness due to internal pressure (t)	<u>0.0918"</u>		
Design thickness due to external pressure (t_e)	<u>0.0651"</u>		
Maximum allowable working pressure (MAWP)	<u>307.36 psi</u>		
Maximum allowable pressure (MAP)	<u>309.6 psi</u>		
Maximum allowable external pressure (MAEP)	<u>139.63 psi</u>		
Rated MDMT	-55 °F		

UCS-66 Material Toughness Requirements		
Governing thickness, t _g =	0.1875"	
Exemption temperature from Fig UCS-66 Curve B =	-20°F	
$t_r = \frac{135.16 \cdot 12}{20,000 \cdot 1 - 0.6 \cdot 135.16} =$	0.0814"	
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0814 \cdot 1}{0.1875 - 0} =$	0.4343	
Reduction in MDMT, T _R from Fig UCS-66.1 =	75.6°F	
$MDMT = \max [MDMT - T_R, -55] = \max [-20 - 75.6, -55] =$	-55°F	
Material is exempt from impact testing at the Design MDMT of -20°F.		

Design thickness, (at 250 °F) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{152.24 \cdot 12}{20,000 \cdot 1.00 - 0.60 \cdot 152.24} + 0 = \underline{0.0918}"$

Maximum allowable working pressure, (at 250 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{20,000 \cdot 1.00 \cdot 0.1875}{12 + 0.60 \cdot 0.1875} - 2.24 = \underline{307.36} \text{ psi}$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 0.1875}{12 + 0.60 \cdot 0.1875} = \underline{309.6} \text{ psi}$

External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$
$$\frac{D_o}{t} = \frac{24.375}{0.0651} = 374.4084$$

From table G: A = 0.000291

From table CS-2: B = 4,212.0919 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 4,212.09}{3 \cdot (24.375/0.0651)} = 15 ~{
m psi}$$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.0651 + 0 = 0.0651$ "

Maximum Allowable External Pressure, (Corroded & at 250 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{16}{24.375} = 0.6564$$
$$\frac{D_o}{t} = \frac{24.375}{0.1875} = 130.0000$$

From table G: A = 0.001425

From table CS-2: B = 13,613.5745 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 13,613.57}{3 \cdot (24.375/0.1875)} = \underline{139.63} \text{ psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 0.1875}{12.0938}\right) \cdot \left(1 - \frac{12.0938}{\infty}\right) = 0.7752\%$$

The extreme fiber elongation does not exceed 5%.

Ellipsoidal Head #2

ASME Section VIII Division 1, 2021 Edition					
Component		Ellipsoidal Head			
Material		SA-516 70 (II-D p. 20, In. 45)			
Attac	ched To	Cylinder #1			
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP	
No	No	No	No	No	
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)	
Inte	ernal	150	250	-20	
Ext	ternal	15	250	-20	
		Static Liq	uid Head		
Con	dition	P _s (psi)	H _s (in)	SG	
Operating		2.45	68	1	
Test h	orizontal	1.09	30.1875	1	
Dimensions					
Inner Diameter		24"			
Head	d Ratio	2			
Minimum	Thickness	0.0916"			
Corrosion	Inner	0"			
	Outer	0"			
Leng	gth L _{sf}	2"			
Nominal T	hickness t _{sf}	0.1875"			
		Weight and	I Capacity		
		Weig	Weight (Ib) ¹ Capacity (US gal) ¹		
N	lew	25.43		11.75	
Cor	roded	25.43		11.75	
		Radiog	raphy		
Categor	ry A joints		Seamless No R	Т	
Head to shell seam		Full UW-11(a) Type 1			
includes strai	ght flange				

Results Summary				
Governing condition	internal pressure			
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"			
Design thickness due to internal pressure (t)	<u>0.0916</u> "			
Design thickness due to external pressure (t_e)	<u>0.0622</u> "			
Maximum allowable working pressure (MAWP)	<u>150.1</u> psi			
Maximum allowable pressure (MAP)	<u>152.55</u> psi			
Maximum allowable external pressure (MAEP)	<u>32.5</u> psi			
Straight Flange governs MDMT	-55°F			

Design thickness for internal pressure, (Corroded at 250 °F) UG-32(c)(1)

$$t = \frac{P \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{152.45 \cdot 24}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 152.45} + 0 = \underline{0.0915}$$

Maximum allowable working pressure, (Corroded at 250 °F) UG-32(c)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 20,000 \cdot 1 \cdot 0.0916}{24 + 0.2 \cdot 0.0916} - 2.45 = \underline{150.1} \text{ psi}$$

Maximum allowable pressure, (New at 70 °F) UG-32(c)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 20,000 \cdot 1 \cdot 0.0916}{24 + 0.2 \cdot 0.0916} - 0 = \underline{152.55} \text{ psi}$$

Design thickness for external pressure, (Corroded at 250 °F) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0.8932 \cdot 24.1832 = 21.6012$ in

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{21.6012 \ / \ 0.062175} = 0.00036$$

From Table CS-2: B = 5,211.3824 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{5,211.3824}{21.6012 \ / \ 0.0622} = 15 \text{ psi}$$

t = 0.0622"+Corrosion = 0.0622" + 0" = 0.0622"

The head external pressure design thickness (t_e) is $\underline{0.0622}$ ".

Maximum Allowable External Pressure, (Corroded at 250 °F) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0.8932 \cdot 24.1832 = 21.6012$ in

$$A = rac{0.125}{R_o \ / \ t} = rac{0.125}{21.6012 \ / \ 0.0916} = 0.00053$$

From Table CS-2: B = 7,663.7289 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{7,663.7289}{21.6012 \ / \ 0.0916} = 32.498 \ {
m psi}$$

The maximum allowable external pressure (MAEP) is 32.5 psi.

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(rac{75 \cdot t}{R_f}
ight) \cdot \left(1 - rac{R_f}{R_o}
ight) = \left(rac{75 \cdot 0.1875}{4.1738}
ight) \cdot \left(1 - rac{4.1738}{\infty}
ight) = 3.3693\%$$

The extreme fiber elongation does not exceed 5%.

Liquid Level bounded by Ellipsoidal Head #2

ASME Section VIII Division 1, 2021 Edition		
Location from Datum (in)		
Operating Liquid Specific Gravity		