Elsewedy Electric

COMPRESS Pressure Vessel Design Calculations

Designer:	CD
Date:	Monday, February 14, 2022
Location:	
Purchaser:	
Name:	Elsewedy Electric Example
Class:	-
Service:	
P.O. Number:	
Tag Number:	
Unit Number:	

Table of Contents

General Arrangement Drawing	1
Deficiencies Summary	3
Nozzle Schedule	4
Nozzle Summary	5
Pressure Summary	6
Nameplate Summary	8
Revision History	10
Settings Summary	11
Radiography Summary	13
Thickness Summary	14
Weight Summary	15
Long Seam Summary	16
Hydrostatic Test	18
Vacuum Summary	19
Foundation Load Summary	20
Bill of Materials	21
Liquid Level	23
Wind Code	24
Seismic Code	31
Top Head	36
Straight Flange on Top Head	39
Nozzle #2 (N2)	58
Nozzle #4 (N4)	86
Bolted Cover #3	98
Nozzle #5 (N5)	100
Cylinder #1	119
Nozzle #6 (N6)	139
Platform/Ladder #1	166
Cylinder #2	168
Nozzle #3 (N3)	188
Vacuum Ring	215

Cylinder #3	218
Nozzle #1 (N1)	238
Shipping Saddle	265
Cylinder #4	270
Legs #1	307
Straight Flange on Bottom Head	318
Bottom Head	338

1/340

Deficiencies Summary

Deficiencies for Bottom Head

UG-32(i): The inside knuckle radius (271.6 mm) is less than 6 percent of the head skirt outside diameter (0.06*4,530.72 mm = 271.84 mm). (Corroded)

Deficiencies for Cylinder #1

UCS-6(b)(3): Material thickness cannot exceed 16 mm.

Deficiencies for Legs #1

All available leg structures are too small. WRC 537: The combined stress (PL+Pb+Q) is excessive WRC 537: The local primary membrane stress (PL) is excessive

Deficiencies for Nozzle #5 (N5) Nozzle MAWP (0 bar) is less than the design pressure (7 bar). UG-39: Not adequately reinforced (MAWP) UG-39: Not adequately reinforced (Internal Pressure) Nozzle MAP (0 bar) is less than the design pressure (7 bar). UG-39: Not adequately reinforced (MAP) UG-39: Not adequately reinforced (MAP) UG-37: Nozzle MAEP (0 bar) is less than the external design pressure (0.8 bar).

Deficiencies for Nozzle #6 (N6) Nozzle MAWP (6.24 bar) is less than the design pressure (7 bar). UG-37: Not adequately reinforced (Internal Pressure)

Deficiencies for Top Head

UG-32(i): The inside knuckle radius (271.6 mm) is less than 6 percent of the head skirt outside diameter (0.06*4,530.72 mm = 271.84 mm). (Corroded)

Deficiencies for Vacuum Ring

The rings in group 'Vacuum Ring' interfere with nozzle 'Nozzle #3 (N3) + pad' at elevation 3,992.65 mm.

Warnings Summary

Warnings for Nozzle #4 (N4)

The attached ASME B16.5 flange limits the nozzle MAP. (warning)

Warnings for Vessel

Changes to steelmaking practices have increased the risk of brittle fracture at temperatures higher than the ASME impact test exemption temperatures. It is highly recommended that the following supplemental requirements be applied for SA-105, SA-106 B, SA-53 seamless, and SA-234: material composition should have a minimum Mn:C ratio of 5, and SA-105 flanges should require a grain size of 7 or finer. (warning)

Warnings for <u>Wind Code</u> Basic Wind Speed (38.00 m/s) is less than the minimum basic wind speed of 40.00 m/s specified as per Fig. 26.5-1B (warning)

ASME B16.5 / B16.47 Flange Warnings Summary

Flange	Applicable Warnings
Nozzle #4 (N4)	1
Nozzle #2 (N2)	2
Nozzle #6 (N6)	2
Nozzle #3 (N3)	2
Nozzle #1 (N1)	2

No.	Warning
1	For Class 150 flanges, ASME B16.5 para. 5.4.3 recommends gaskets to be in accordance with Nonmandatory Appendix B, Table B1, Group No. I.
2	For Class 150 flanges, ASME B16.47 para. 5.4.3 recommends gaskets to be in accordance with Nonmandatory Appendix B, Table B1, Group No. Ia or Ib.

Nozzle Schedule

	Specifications								
Nozzle mark	Identifier	Size		Materials		Normalized	Fine Grain	Flange	Blind
N1	Nozzle #1	NPS 26 Sch 20 (XS) DN 650	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 26 Class 150	NPS 26 Class 150
	NUZZIE #1	NF3 20 301 20 (X3) DN 030	Pad	SA-516 70	No	No	No	WN A105 Series A	A105 Series A
N2	Nozzle #2	NPS 46 XS DN 1150	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 46 Class 150	SA-516 70
<u>112</u>	NUZZIE #2	NF3 40 X3 DN 1150	Pad	SA-516 70	No	No	No	WN A105 Series A	3A-31070
NI2	Nozzlo #2	NBS 26 Seb 20 (XS) DN 650	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 26 Class 150	NPS 26 Class 150 A105 Series A
<u>IN5</u>	102218 #3	NF3 20 301 20 (X3) DN 030	Pad	SA-516 70	No	No	No	WN A105 Series A	
<u>N4</u>	Nozzle #4	NPS 2 Sch 160 DN 50	Nozzle	SA-106 B Smls Pipe	No	No	No	NPS 2 Class 150 WN A105	No
<u>N5</u>	Nozzle #5	NPS 10 (Thk = 0.438") DN 250	Nozzle	SA-106 B Smls Pipe	No	No	No	N/A	No
NG	Nozzlo #6			SA-106 B Smls Pipe	No	No	No	NPS 26 Class 150	NPS 26 Class 150
	1102210 #0	NF 5 20 301 20 (XS) DN 030	Pad	SA-516 70	No	No	No	WN A105 Series A	A105 Series A

Nozzle Summary

Dimensions												
Nozzle	OD	t _n	Req t _n	A 2	She				Reinfor Pa	cement ad	Corr	A _a /A _r
mark	(mm)	(mm)	(mm)	~1'	A 21	Nom t (mm)	Design t (mm)	User t (mm)	Width (mm)	t _{pad} (mm)	(mm)	(%)
<u>N1</u>	660.4	12.7	11.34	Yes	Yes	18	15.14		180	18	1.59	100.0
<u>N2</u>	1,168.4	12.7	11.34	Yes	Yes	23.64*	13.58		100	11.82	1.59	100.0
<u>N3</u>	660.4	12.7	11.34	Yes	Yes	18	15.14		180	18	1.59	100.0
<u>N4</u>	60.33	8.74	5.73	Yes	Yes	12.7	N/A		N/A	N/A	1.59	Exempt
<u>N5</u>	273.05	11.13	11.09	Yes	Yes	68	64.36		N/A	N/A	1.59	21.0**
<u>N6</u>	660.4	12.7	11.34	Yes	Yes	18	15.37		180	18	1.59	100.0
*Head n **The n	*Head minimum thickness after forming **The nozzle does not have sufficient reinforcement.											

Definitions							
tn	Nozzle thickness						
Req t _n	n Nozzle thickness required per UG-45/UG-16 Increased for pipe to account for 12.5% pipe thickness tolerance						
Nom t	Vessel wall thickness						
Design t	Required vessel wall thickness due to pressure + corrosion allowance per UG-37						
User t	Local vessel wall thickness (near opening)						
A _a	Area available per UG-37, governing condition						
A _r	Area required per UG-37, governing condition						
Corr	Corrosion allowance on nozzle wall						

Pressure Summary

Component Summary										
ldentifier	P Design (bar)	T Design (°C)	MAWP (bar)	MAP (bar)	MAEP (bar)	T _e external (°C)	MDMT (°C)	MDMT Exemption		Impact Tested
Top Head	7	40	7	8.18	2.53	40	-105	No	te 1	No
Straight Flange on Top Head	7	40	8.33	10.38	1	40	-105	Note 2		No
Cylinder #1	7	40	7.13	9.08	1.16	40	-105	No	te 3	No
Cylinder #2	7	40	8.47	10.99	1.13	40	-105	No	te 4	No
Cylinder #3	7	40	8.23	10.99	1.13	40	-105	No	te 5	No
Cylinder #4	7	40	7.57	10.38	0.97	40	-105	No	te 6	No
Straight Flange on Bottom Head	7	40	7.57	10.38	0.97	40	-105	No	te 8	No
Bottom Head	7	40	7	9.02	3.17	40	-105	Note 7		No
Vacuum Ring	N/A	N/A	N/A	N/A	1.13	40	-105	Note 9		No
<u>Legs #1</u>	7	40	7	N/A	N/A	N/A	N/A	N	I/A	N/A
Nozzle #1 (N1)	7	40	7.14	9.25	1.13	40	-29	Nozzle Pad	Note 10 Note 11	No No
	7	40	7.07	0.22	1	40	40	Nozzle	Note 12	No
		40	7.07	0.32		40	-40	Pad	Note 13	No
Bolted Cover #3	7	40	10.39	10.89	15.14	40	-29	Not	te 14	No
	7	40	7 35	9.25	1 13	40	-29	Nozzle	Note 10	No
			1.00	0.20	1.10		-25	Pad	Note 11	No
Nozzle #4 (N4)	7	40	19.42	19.6	1	40	-29	Not	te 15	No
Nozzle #5 (N5)	7	40	0	0	0	40	-105	Not	te 16	No
	7	40	6.24	7.76	1 16	40	-29	Nozzle	Note 17	No
		40	0.24	1.10	1.10	40	-29	Pad	Note 11	No

Chamber Summary						
Design MDMT		5 °C				
Rated MDMT		5 °C @ 0 bar				
MAWP hot & corroded		0 bar @ 40 °C				
MAP cold & new		0 bar @ 21.11 °C				
MAEP		0 bar @ 40 °C				
(1) The rated MDMT is limited to the c	lesign MDMT based on the s	etting in the Calculations tab of the Set Mode dialog.				

	Notes for MDMT Rating					
Note #	Exemption	Details				
1.	Straight Flange governs MDMT					
2.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0089)					
3.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0414)					
4.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0601)					
5.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.086)					
6.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0987)					
7.	Straight Flange governs MDMT					
8.	Material is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0993)					
9.	Ring is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0601)					
10.	Nozzle is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.2218).					
11.	Pad is impact test exempt per UG-20(f)	UCS-66 governing thickness = 18 mm.				
12.	Nozzle impact test exemption temperature from Fig UCS-66M Curve B = -24.98°C Fig UCS-66.1M MDMT reduction = 69.6°C, (coincident ratio = 0.362) Rated MDMT of -94.58°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 11.11 mm.				
13.	Pad impact test exemption temperature from Fig UCS-66M Curve B = -23.65°C 13. Fig UCS-66.1M MDMT reduction = 25.7°C, (coincident ratio = 0.566) Rated MDMT of -49.35°C is limited to -48°C by UCS-66(b)(2)					
14.	Bolted cover is impact test exempt per UG-20(f)	UCS-66 governing thickness = 17 mm				
15.	Flange rating governs: Flange rated MDMT per UG-20(f) = -29°C Bolts rated MDMT per Fig UCS-66 note (c) = -48°C					
16.	Nozzle is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.0827).					
17.	Nozzle is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.1857).					

Nameplate Content					
National Board Number	NB Number				
Certification Mark Designator	U				
Manufacturer's Serial Number	Manf. Serial No.				
Certified by	Codeware Example				
Notes	Nameplate Notes				
Construction Type	W				
Special Service					
Non Destructive Examination	RT1				
PWHT	None				
MAWP	0 bar @ 40 °C				
MDMT	5 °C @ 0 bar				
MAEP	0 bar @ 40 °C				

Revision History

	Revisions							
No.	Date	Operator	Notes					
0	2/14/2022	christian.dionisio	New vessel created with Vessel Wizard, ASME Section VIII Division 1 [COMPRESS 2022 Build 8200]					

Settings Summary

COMPRESS 2022 Build 8200						
ASME Section VIII Division 1, 2021 Edition Metric						
Units	MKS					
Datum Line Location	0.00 mm from bottom seam					
Vessel Design Mode	Design Mode					
Minimum thickness	1.5 mm per UG-16(b)					
Design for cold shut down only	No					
Design for lethal service (full radiography required)	No					
Design nozzles for	Design P only					
Corrosion weight loss	100% of theoretical loss					
UG-23 Stress Increase	1.00					
Skirt/legs stress increase	1.0					
Minimum nozzle projection	152.4 mm					
Juncture calculations for α > 30 only	Yes					
Preheat P-No 1 Materials > 1.25" and <= 1.50" thick	No					
UG-37(a) shell tr calculation considers longitudinal stress	No					
Cylindrical shells made from pipe are entered as minimum thickness	No					
Nozzles made from pipe are entered as minimum thickness	No					
ASME B16.9 fittings are entered as minimum thickness	No					
Butt welds	Tapered per Figure UCS-66.3(a)					
Disallow Appendix 1-5, 1-8 calculations under 15 psi	No					
Hydro/Pneumatic Test						
Shop Hydrotest Pressure	1.3 times vessel MAWP [UG-99(b)]					
Test liquid specific gravity	1.00					
Maximum stress during test	90% of vield					
Required Marking - UG-116						
UG-116(e) Radiography	RT1					
UG-116(f) Postweld heat treatment	None					
Code Cases\Interpretations						
Use Appendix 46	No					
Use UG-44(b)	No					
Apply interpretation VIII-1-83-66	Yes					
Apply interpretation VIII-1-86-175	Yes					
Apply interpretation VIII-1-01-37	Yes					
Apply interpretation VIII-1-01-150	Yes					
Apply interpretation VIII-1-07-50	Yes					
Apply interpretation VIII-1-16-85	No					
No UCS-66.1 MDMT reduction	No					
No UCS-68(c) MDMT reduction	No					
Disallow UG-20(f) exemptions	No					
UG-22(a) Internal or External Design Pressure						
UG-22(b) Weight of the vessel and normal contents under operating or test conditions	Yes					
UG-22(c) Superimposed static reactions from weight of attached equipment (external loads)	No					
UG-22(d)(2) Vessel supports such as lugs rings skirts saddles and legs	Yes					
UG-22(f) Wind reactions	Yes					
UG-22(f) Seismic reactions	Yes					
UG-22(i) Test pressure and coincident static head acting during the test	No					
Note: UG-22(b) (c) and (f) loads only considered when supports ar	e present					
	- F					

License Information					
Company Name	Codeware, Inc.				
License	Commercial				
License Key ID	23740				
Support Expires	July 03, 2022				

Radiography Summary

UG-116 Radiography								
	Lo	ngitudinal Seam	Тор С	ircumferential Seam	Botton			
Component	Category (Fig UW- 3)	Radiography / Joint Type	Category (Fig UW- 3)	egory UW- 3) Radiography / Joint Type		Radiography / Joint Type	Mark	
Top Head	N/A	Seamless No RT	N/A	N/A	В	Full UW-11(a) / Type 2	RT1	
Bolted Cover #3	N/A	Seamless No RT	N/A	N/A / Gasketed	N/A	N/A	N/A	
Cylinder #1	A	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 2	В	Full UW-11(a) / Type 2	RT1	
Cylinder #2	A	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 2	В	Full UW-11(a) / Type 2	RT1	
Cylinder #3	A	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 2	В	Full UW-11(a) / Type 2	RT1	
Cylinder #4	A	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 2	В	Full UW-11(a) / Type 2	RT1	
Bottom Head	N/A	Seamless No RT	В	Full UW-11(a) / Type 2	N/A	N/A	RT1	
Nozzle	Lo	ngitudinal Seam	Nozzle to	Nozzle to Vessel Circumferential Seam		Nozzle free end Circumferential Seam		
Nozzle #2 (N2)	N/A	Seamless No RT	D	N/A / Type 7	С	Full UW-11(a) / Type 1	RT1	
<u>Nozzle #4 (N4)</u>	N/A	Seamless No RT	D	N/A / Type 7	с	UW-11(a)(4) exempt / Type 1	N/A	
<u>Nozzle #6 (N6)</u>	N/A	Seamless No RT	D	N/A / Type 7	С	Full UW-11(a) / Type 1	RT1	
Nozzle #3 (N3)	N/A	Seamless No RT	D	N/A / Type 7	С	Full UW-11(a) / Type 1	RT1	
Nozzle #1 (N1)	N/A	Seamless No RT	D	N/A / Type 7	С	Full UW-11(a) / Type 1	RT1	
Nozzle Flange	Lo	ngitudinal Seam		Flange Face	Nozzle to Flange Circumferential Seam			
ASME B16.5/16.47 flange attached to Nozzle #2 (N2)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	Full UW-11(a) / Type 1	RT1	
ASME B16.5/16.47 flange attached to Nozzle #4 (N4)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	UW-11(a)(4) exempt / Type 1	N/A	
ASME B16.5/16.47 flange attached to Nozzle #6 (N6)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	Full UW-11(a) / Type 1	RT1	
ASME B16.5/16.47 flange attached to Nozzle #3 (N3)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	Full UW-11(a) / Type 1	RT1	
ASME B16.5/16.47 flange attached to Nozzle #1 (N1)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	Full UW-11(a) / Type 1	RT1	
		UG-116(e) Require	ed Marking:	RT1				

Thickness Summary

Component Data									
Component Identifier	Material	Diameter (mm)	Length (mm)	Nominal t (mm)	Design t (mm)	Total Corrosion (mm)	Joint E	Load	
Top Head	SA-516 70	4,500 ID	785.66	23.64*	23.64	3.24	1.00	Internal	
Straight Flange on Top Head	SA-516 70	4,500 ID	50.8	17	15.81	3.24	1.00	External	
Cylinder #1	SA-36	4,500 ID	2,438.4	18	17.73	3.24	1.00	Internal	
Cylinder #2	SA-516 70	4,500 ID	2,438.4	18	15.93	3.24	1.00	External	
Cylinder #3	SA-516 70	4,500 ID	2,438.4	18	15.97	3.24	1.00	Internal	
Cylinder #4	SA-516 70	4,500 ID	568.5	17	16.06	3.24	1.00	Internal	
Straight Flange on Bottom Head	SA-516 70	4,500 ID	50.8	17	16.07	3.24	1.00	Internal	
Bottom Head	SA-516 70	4,500 ID	788.08	26.06*	26.06	3.24	1.00	Internal	
Bolted Cover #3	SA-516 70	1,454.15 OD	68	68	67.31	1.59	1.00	Internal	
*Head minimum thickness after for	ormina								

Definitions							
Nominal t Vessel wall nominal thickness							
Design t Required vessel thickness due to governing loading + corrosion							
Joint E Longitudinal seam joint efficiency							
	Load						
Internal Circumferential stress due to internal pressure governs							
External External pressure governs							
Wind Combined longitudinal stress of pressure + weight + wind gover							
Seismic	Combined longitudinal stress of pressure + weight + seismic governs						

Weight Summary

Weight (kg) Contributed by Vessel Elements											
Component	Metal New*	Metal Corroded	Insulation	Insulation Supports	Lining	Piping + Liquid	Operating Liquid		Test Liquid		Surface Area
Component							New	Corroded	New	Corroded	m²
Top Head	3,437.2	2,960.8	0	0	0	0	8,003.4	8,032.6	8,307.2	8,341.1	19.63
Cylinder #1	4,831.5	3,961.5	0	0	0	0	37,984.3	38,039	38,759.5	38,815.3	34.41
Cylinder #2	4,831.5	3,961.8	0	0	0	0	37,984.3	38,039	38,759.5	38,815.3	34.41
Cylinder #3	4,831.5	3,961.5	0	0	0	0	37,984.3	38,039	38,759.5	38,815.3	34.41
Cylinder #4	1,074.3	869.5	0	0	0	0	8,853.4	8,866	9,034	9,046.9	8.1
Bottom Head	4,004.3	3,500	0	0	0	0	8,018.5	8,049.2	8,182.2	8,213.5	20.77
Legs #1	1,547.3	1,547.3	0	0	0	0	0	0	0	0	16.27
TOTAL:	24,557.5	20,762.5	0	0	0	0	138,828.3	139,064.7	141,802.1	142,047.4	167.98
*Shells with a	ttached no	zzles have	weight redu	ced by mate	rial cut o	out for ope	nina.				

Weight (kg) Contributed by Attachments Nozzles & **Body Flanges** Surface Area Packed Ladders & Tray Rings & Vertical Flanges Component Trays Beds Platforms* Supports Clips Loads m² New Corroded New Corroded 0 1,910.4 0 2,104.2 0 200.6 0 0 0 0 4.05 Top Head 0 558.5 555.6 773.1 1.43 Cylinder #1 0 0 0 0 0 0 Cylinder #2 0 0 558.5 555.6 0 65.3 0 0 451.4 0 8.05 0 558.5 555.6 0 65.3 0 0 1.43 Cylinder #3 0 0 0 0 0 0 Cylinder #4 0 0 0 0 15.2 1.6 0 0 Bottom Head 0 0 0 0 0 40.2 0 0 0 0 0 0 0 Legs #1 0 0 0 0 0 0 0 0 0 TOTAL: 0 0 3,779.6 3,577.2 0 1,159.8 0 0 453 0 14.97

* Platforms and ladders are not included in surface area.

Vessel Totals					
	New	Corroded			
Operating Weight (kg)	168,778	165,017			
Empty Weight (kg)	29,950	25,952			
Test Weight (kg)	171,752	168,000			
Surface Area (m ²)	182.94	-			
Capacity** (liters)	141,763	142,004			
**The vessel capacity does not include volum	ne of nozzle, piping	or other attachments.			

Vessel Lift Condition					
Vessel Lift Weight, New (kg)	29,975				
Center of Gravity from Datum (mm)	3,947.32				

Shell Long Seam Angles							
Component	Seam 1	Seam 2	Seam 3				
Cylinder #1	0°	154.6834°	309.3668°				
Cylinder #2	30°	184.6834°	339.3668°				
Cylinder #3	0°	154.6834°	309.3668°				
Cylinder #4	30°	184.6491°	339.2983°				

Shell Plate Lengths								
Component	Starting Angle	Plate 1	Plate 2	Plate 3				
Cylinder #1	0°	6,098.7 mm	6,098.7 mm	1,996.31 mm				
Cylinder #2	30°	6,098.7 mm	6,098.7 mm	1,996.31 mm				
Cylinder #3	0°	6,098.7 mm	6,098.7 mm	1,996.31 mm				
Cylinder #4	30°	6,096 mm	6,096 mm	1,998.57 mm				

Notes

1) Plate Lengths use the circumference of the vessel based on the mid diameter of the components. 2) North is located at 0°

OPEN RICE

Shell Rollout

Hydrostatic Test

Horizontal shop hydrostatic test based on MAWP per UG-99(b)

Gauge pressure at 21.11°C = $1.3 \cdot MAWP \cdot LSR$

$$= 1.3 \cdot 0 \cdot 1$$

$$= 0$$
 bar

Horizontal shop hydrostatic test							
Identifier	Local test pressure (bar)	Test liquid static head (bar)	UG-99(b) stress ratio	UG-99(b) pressure factor			
Top Head (1)	0.44	0.44	1	1.30			
Straight Flange on Top Head	0.44	0.44	1	1.30			
Cylinder #1	0.44	0.44	1	1.30			
Cylinder #2	0.44	0.44	1	1.30			
Cylinder #3	0.44	0.44	1	1.30			
Cylinder #4	0.44	0.44	1	1.30			
Straight Flange on Bottom Head	0.44	0.44	1	1.30			
Bottom Head	0.44	0.44	1	1.30			
Bolted Cover #3	0.28	0.28	1	1.30			
Nozzle #1 (N1)	0.41	0.41	1	1.30			
Nozzle #2 (N2)	0.28	0.28	1	1.30			
Nozzle #3 (N3)	0.41	0.41	1	1.30			
Nozzle #4 (N4)	0.16	0.16	1	1.30			
Nozzle #5 (N5)	0.23	0.23	1	1.30			
Nozzle #6 (N6)	0.41	0.41	1	1.30			

(1) Top Head limits the UG-99(b) stress ratio.
 (2) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange.
 (3) UG-99(i): Custom flange assemblies shall be tested with gaskets having identical geometries and gasket factors, and bolting having identical allowable stress at room temperature as used in the design calculations.

The field test condition has not been investigated.

The test temperature of 21.11 °C is warmer than the minimum recommended temperature of -12 °C so the brittle fracture provision of UG-99(h) has been met.

Largest Unsupported Length Le							
Component	Line of Support	Elevation above Datum (mm)	Length Le (mm)				
Top Head	-	8,720.16	N/A				
-	1/3 depth of Top Head	8,189.04	N/A				
Straight Flange on Top Head Top	-	7,934.5	4,196.39				
Straight Flange on Top Head Bottom	-	7,883.7	4,196.39				
Cylinder #1 Top	-	7,883.7	4,196.39				
Cylinder #1 Bottom	-	5,445.3	4,196.39				
Cylinder #2 Top	-	5,445.3	4,297.99				
-	Vacuum Ring	3,992.65	4,247.19				
Cylinder #2 Bottom	-	3,006.9	4,297.99				
Cylinder #3 Top	-	3,006.9	4,297.99				
Cylinder #3 Bottom	-	568.5	4,297.99				
Cylinder #4 Top	-	568.5	4,297.99				
Cylinder #4 Bottom	-	0	4,297.99				
Straight Flange on Bottom Head Top	-	0	4,297.99				
Straight Flange on Bottom Head Bottom	-	-50.8	4,297.99				
-	1/3 depth of Bottom Head	-305.34	N/A				
Bottom Head	-	-838.88	N/A				
For Rings, the listed value of length Le is	IsperUG-29						

Foundation Load Summary

Legs #1: Total Loading at Base								
Load	Vessel Condition	Base Shear (kg _f)	Base Moment (kg _f -m)	Vertical Force (kg _f)				
Weight	Operating, Corroded	0	4,119.2	165,218.9				
Weight	Operating, New	0	4,140	169,008				
Wind	Operating, Corroded	1,749.6	15,268.3	165,218.9				
Wind	Operating, New	1,749.5	15,288.9	169,008				
Wind	Empty, Corroded	1,749.6	15,268.3	26,154.2				
Wind	Empty, New	1,749.5	15,288.9	30,179.7				
Wind	External Pressure, Corroded	1,749.6	15,268.3	165,218.9				
Seismic	Operating, Corroded	33,043.8	226,860.2	185,045.2				
Seismic	Operating, New	33,801.6	232,321.1	189,288.9				
Seismic	Empty, Corroded	5,230.8	42,458.3	29,292.7				
Seismic	Empty, New	6,035.9	48,229.7	33,801.2				
Seismic	External Pressure, Corroded	33,043.8	226,860.2	185,045.2				

Shear and moment values reported above are presented without applicable load combination factors.

Vertical Force values in the Seismic case include the $1 + 0.2 * S_{DS}$ dead load factor (compressive) as described in the Seismic Code report. This excludes the 0.7 load combination factor as well.

Support Information						
Support Type	Legs					
Number of Support Elements (Base Plates)	4					
Base Plate Length	584.2 mm					
Base Plate Width	381 mm					
Base Plate Thickness	57 mm					
Number of Anchor Bolts Per Base Plate	1					
Bolt Circle Diameter	4,584.8 mm					
Bolt Size and Type	1-7/8" series 8 bolt					
Bolt Hole Clearance	9.52 mm					
Center of Gravity (Distance from Support Base)	5,471.32 mm					

Bill of Materials

Heads / Covers									
Item #	Туре	Material	Thk [mm]	Dia. [mm]	Wt. [kg] (ea.)	Qty			
H1	F&D Head	SA-516 70	23.64 (min.)	4,500 ID	3,635.7	1			
H2	F&D Head	SA-516 70	26.06 (min.)	4,500 ID	4,004.3	1			
H3	Bolted Cover	SA-516 70	68	1,454.15 OD	884.6	1			
H4	ASME B16.5/B16.47 Blind NPS 26 Class 150	A105	68.33	869.95 OD	337	3			

Shells									
Item #	Туре	Material	Thk [mm]	Dia. [mm]	Length [mm]	Wt. [kg] (ea.)	Qty		
S1	Cylinder	SA-36	18	4,500 ID	2,438	4,879.8	1		
S2	Cylinder	SA-516 70	18	4,500 ID	2,438	4,879.8	2		
S3	Cylinder	SA-516 70	17	4,500 ID	569	1,074.3	1		

Rings / Legs								
Item #	Туре	Material	Thk [mm]	Length [mm]	Wt. [kg]	Qty		
R1	3/4x8 Flat Bar	SA-516 70	19.05	14,889	451.4	1		
L1	W 18x106	Leg material	23.88	1,829	386.8	4		

			Nozzles				
Item #	Туре	Material	NPS	Thk [mm]	Dia. [mm]	Length [mm]	Wt. [kg]
Noz1	Nozzle	SA-106 B Smls Pipe	NPS 46 XS DN 1150	12.7	1,168.4 OD	1,976	750.6
Noz2	Nozzle	SA-106 B Smls Pipe	NPS 2 Sch 160 DN 50	8.74	60.33 OD	102	1.1
Noz3	Nozzle	SA-106 B Smls Pipe	NPS 10 (Thk = 0.438") DN 250	11.13	273.05 OD	220	15.8
Noz4	Nozzle	SA-106 B Smls Pipe	NPS 26 Sch 20 (XS) DN 650	12.7	660.4 OD	272	256.1
						,	,

	Flanges										
Item #	Туре	Material	NPS	Dia. [mm]	Wt. [kg] (ea.)	Qty					
AF1	ASME B16.5 Welding Neck - Class 150	A105	2	152.4 x 52.58	2.7	1					
AF2	ASME B16.47 Welding Neck - Class 150 - Series A	A105	46	1,454.15 x 1,150.92	480.8	1					
AF3	ASME B16.47 Welding Neck - Class 150 - Series A	A105	26	869.95 x 647.7	136.1	3					

Gaskets								
Item #	Туре	Size [mm]	Thk [mm]	Qty				
G1	Corrugated metal Iron or soft steel / Mineral Fiber (Corrugated Metal)	1,160 x 1,155	4.44	1				
There are 4	There are 4 flanges that do not include gasket information.							

Fasteners								
Item #	Description	Material	Length [mm]	Qty				
FB1	5/8" coarse bolt	SA-193 B7 Bolt <= 64	70	4				
FB2	1-1/2" series 8 bolt	SA-193 B7 Bolt <= 64	260	40				
FB3	1-1/4" series 8 bolt	SA-193 B7 Bolt <= 64	184	72				
SB1	1-7/8" series 8 bolt	Support Leg bolt material	-	4				
All listed flange bolts require associated nuts and washers in accordance with Division 1, UCS-11.								

Platform and Ladders						
Item #	PI. Area [m²]	Pl. Wt. [kg]	Lad. Len. [mm]	Lad. Wt. [kg]	Rail Len. [mm]	Rail Wt. [kg]
PL-1	12.4	605.4	9,000	241.1	17,544	313.3

Plates							
Item #	Material	Thk [mm]	Wt. [kg]	Qty [m²]			
Plate1	SA-516 70	11.82	292.6	1.47			
Plate1 - Note: Applie	es to nozzle pad						
Plate2	SA-516 70	18	488.1	2.45			
Plate2 - Note: Applie	Plate2 - Note: Applies to nozzle pad						
Plate3	Unspecified material	57 397.5		0.89			
Plate3 - Note: Applie	Plate3 - Note: Applies to support leg base plates						
Plate4	Carbon steel	15.88	870.8	7			
Plate4 - Note: Applie	Plate4 - Note: Applies to shipping saddle base plate, shipping saddle web plate						
Plate5	Plate5 Carbon steel 12.7 313.6 3.15						
Plate5 - Note: Applies to shipping saddle rib plate							
Plate6 Unspecified material 6.35 1.6 0.0323							
Plate6 - Note: Applie	es to nameplate front, nameplate projection						

Liquid Level

ASME Section VIII Division 1, 2021 Edition Metric		
Location from Datum (mm) 8,663.		
Operating Liquid Specific Gravity	0.98	

Wind Code

Building Code: ASCE 7-16					
Elevation of base above gra	de	0.00 ft (0.00 m)			
Increase effective outer dian	neter by	0.00 ft (0.00 m)			
Wind Force Coefficient, Cf		0.7000			
Risk Category (Table 1.5-1)		II			
Basic Wind Speed, V		85.00 mph (37.9984 m/s)			
Exposure Category		В			
Wind Directionality Factor, K	d	0.9500			
Ground Elevation Factor, Ke		1.0000			
Top Deflection Limit		6.00 mm per m.			
Topographic Factor, Kzt		1.0000			
Enforce min. loading of 0.77	kPa	No			
Hazardous, toxic, or explosiv	/e contents	No			
Ves	sel Characteristics				
Height, h		33.6094 ft (10.2442 m)			
Effective Width b	Operating, Corroded	14.2688 ft (4.3491 m)			
	Empty, Corroded	14.2688 ft (4.3491 m)			
	Operating, Corroded	6.5524 Hz			
Fundamental Frequency, n ₁	Empty, Corroded	16.6341 Hz			
	Vacuum, Corroded	6.5524 Hz			
	Operating, Corroded	0.0250			
Damping coefficient, β	Empty, Corroded	0.0200			
	Vacuum, Corroded	0.0250			
Vortex Shedding Calculations Table Lookup Values					

	2.4.1 Basic Load Combinations for Allowable Stress Design				
Load o	Load combinations considered in accordance with ASCE section 2.4.1:				
5.	$D + P + P_{\rm s} + 0.6W$				
7.	$0.6D + P + P_s + 0.6W$				
	Parameter Description				
D	= Dead load				
Р	= Internal or external pressure load				
Ps	= Static head load				
W	= Wind load				

Wind Deflection Reports:

Operating, Corroded Empty, Corroded Vacuum, Corroded

Wind Pressure Calculations

	Wind Deflection Report: Operating, Corroded									
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)		
Top Head	9,407.7	4.54	2,051,670.3	*	0	69.3	26.6	0.05		
Cylinder #1	6,969.3	4.54	2,051,670.3	0.5345	215.9	528.1	2,506.6	0.05		
Cylinder #2	4,530.9	4.54	2,051,670.3	0.5345	215.9	750.1	5,312	0.04		
Cylinder #3	2,092.5	4.54	2,051,670.3	0.5345	215.9	950.5	8,693.4	0.04		
Cylinder #4 (top)	1,524	4.53	2,051,670.3	0.498	215.9	995.1	9,228.4	0.03		
Legs #1	0	0	2,038,903.0	0.001773	0	1,049.7	10,808.6	0.03		
Cylinder #4 (bottom)	1,524	4.53	2,051,670.3	0.498	0	54.7	19.6	0.03		
Bottom Head	1,524	4.54	2,051,670.3	*	0	52.6	18.2	0.03		
		*Moment of	*Moment of Inertia I varies over the length of the component							

Wind Deflection Report: Empty, Corroded								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	9,407.7	4.54	2,062,603.9	*	0	69.3	26.6	0.05
Cylinder #1	6,969.3	4.54	2,062,603.9	0.5345	215.9	528.1	2,506.6	0.05
Cylinder #2	4,530.9	4.54	2,062,603.9	0.5345	215.9	750.1	5,312	0.04
Cylinder #3	2,092.5	4.54	2,062,603.9	0.5345	215.9	950.5	8,693.4	0.04
Cylinder #4 (top)	1,524	4.53	2,062,603.9	0.498	215.9	995.1	9,228.4	0.03
Legs #1	0	0	2,038,903.0	0.001773	0	1,049.7	10,808.6	0.03
Cylinder #4 (bottom)	1,524	4.53	2,062,603.9	0.498	0	54.7	19.6	0.03
Bottom Head	1,524	4.54	2,062,603.9	*	0	52.6	18.2	0.03
*Moment of Inertia I varies over the length of the component								

	Wind Deflection Report: Vacuum, Corroded							
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	9,407.7	4.54	2,051,670.3	*	0	69.3	26.6	0.05
Cylinder #1	6,969.3	4.54	2,051,670.3	0.5345	215.9	528.1	2,506.6	0.05
Cylinder #2	4,530.9	4.54	2,051,670.3	0.5345	215.9	750.1	5,312	0.04
Cylinder #3	2,092.5	4.54	2,051,670.3	0.5345	215.9	950.5	8,693.4	0.04
Cylinder #4 (top)	1,524	4.53	2,051,670.3	0.498	215.9	995.1	9,228.4	0.03
Legs #1	0	0	2,038,903.0	0.001773	0	1,049.7	10,808.6	0.03
Cylinder #4 (bottom)	1,524	4.53	2,051,670.3	0.498	0	54.7	19.6	0.03
Bottom Head	1,524	4.54	2,051,670.3	*	0	52.6	18.2	0.03
	*Moment of Inertia I varies over the length of the component							

Wind Pressure (WP) Calculations

Gust Factor (G) Calculations

$$egin{aligned} Kz &= 2.01 \cdot \left(rac{Z}{Z_g}
ight)^{rac{2}{lpha}} \ &= 2.01 \cdot \left(rac{Z}{365.76}
ight)^{0.2857} \end{aligned}$$

- qz $= 0.613 \cdot Kz \cdot Kzt \cdot Kd \cdot Ke \cdot V^2$
 - $= 0.613 \cdot Kz \cdot 1.0000 \cdot 0.9500 \cdot 1.0000 \cdot 37.9984 \ ^2$

$$= 840.8426 \cdot Kz$$

 $WP = 0.6 \cdot qz \cdot G \cdot Cf$

 $= 0.6 \cdot qz \cdot G \cdot 0.7000$

Design Wind Pressures								
Height Z	K7	qz		WP (bar)				
(m)	(bar)		Operating	Empty	Hydrotest New	Hydrotest Corroded	Vacuum	
4.6	0.5747	0.0048	0.0018	0.0018	N.A.	N.A.	0.0018	
6.1	0.6240	0.0052	0.0019	0.0019	N.A.	N.A.	0.0019	
7.6	0.6650	0.0056	0.0021	0.0021	N.A.	N.A.	0.0021	
9.1	0.7006	0.0059	0.0022	0.0022	N.A.	N.A.	0.0022	
12.2	0.7606	0.0064	0.0024	0.0024	N.A.	N.A.	0.0024	
Design Wind Force determined from: F = Pressure * Af , where Af is the projected area.								

Vortex Shedding Calculations					
Calculations	based on NBC 1995 building co	de, Structural Commentaries (F	Part 4).		
Average diameter of vessel, upper third, D 13.9210 ft (4243.11 mm)					
Aspect ratio, Ar	2.4143				
	Operating, Corroded	Empty, Corroded	Vacuum, Corroded		
Vortex shedding factor, C ₁	N.A.	N.A.	N.A.		
Vortex shedding factor, C ₂ N.A.		N.A.	N.A.		
Weight per foot of vessel, upper third, M 11,620.2939 lb/ft (172.9290 kg/cm)		2,130.0129 lb/ft (31.6981 kg/cm)	11,620.2939 lb/ft (172.9290 kg/cm)		
Strouhal number, S	0.2000	0.2000	0.2000		

Critical wind speed at top of vessel, $V_h = (n*D/S)*(3600/5280)$ mph

Operating, Corroded:
$$V_h = \left(6.5524 \cdot \frac{13.9210}{0.2000}\right) \cdot \left(\frac{3600}{5280}\right) = 310.9609 \text{ mph} (139.0120 \text{ m/s})$$
Empty, Corroded: $V_h = \left(16.6341 \cdot \frac{13.9210}{0.2000}\right) \cdot \left(\frac{3600}{5280}\right) = 789.4170 \text{ mph} (352.9010 \text{ m/s})$ Vacuum, Corroded: $V_h = \left(6.5524 \cdot \frac{13.9210}{0.2000}\right) \cdot \left(\frac{3600}{5280}\right) = 310.9609 \text{ mph} (139.0120 \text{ m/s})$

Reference wind speed corresponding to critical wind speed, $\mathrm{V}_{\mathrm{Ref}}$

Operating, Corroded: $V_{Ref}=310.1491~\mathrm{mph}~(138.6491~\mathrm{m/s})$

Empty, Corroded: $V_{Ref} = 787.3560 \text{ mph} (351.9796 \text{ m/s})$

Vacuum, Corroded: $V_{Ref} = 310.1491 \text{ mph} (138.6491 \text{ m/s})$

Corresponding reference wind speed, V_{Ref}

Operating, Corroded: $V_{Ref} = 85.0000 \text{ mph} (37.9984 \text{ m/s})$

 $V_{Ref} = 85.0000 \, {
m mph} \, (37.9984 \, {
m m/s})$ Empty, Corroded:

Vacuum, Corroded: $V_{Ref} = 85.0000 \text{ mph}(37.9984 \text{ m/s})$

Speed for operating, corroded condition which produces vortex shedding is greater than reference speed. No further vortex shedding computations were done for this condition.

Speed for empty, corroded condition which produces vortex shedding is greater than reference speed. No further vortex shedding computations were done for this condition. Speed for vacuum, corroded condition which produces vortex shedding is greater than reference speed. No further vortex shedding

computations were done for this condition.

Corresponding pressure at top of vessel, $q_h = 0.00256 * V_h^2$

Equivalent static loading,
$$FL = rac{q_h \cdot C_1 \cdot D}{\sqrt{Ar} \cdot \sqrt{eta - \left(C_2 \cdot R0 \cdot rac{D^2}{M}
ight)}}$$

Static loading FL is applied throughout the top third of the vessel

Gust Factor Calculations

Operating, Corroded Empty, Corroded Vacuum, Corroded

Gust Factor Calculations: Operating, Corroded

Vessel is considered a rigid structure as $n_1 = 6.5524 \text{ Hz} \ge 1 \text{ Hz}$.

$$z^- = \max[0.60 \cdot h, z_{\min}]$$

 $= \max[0.60 \cdot 33.6094, 30.0000]$

=30.0000

$$egin{aligned} & I_{z^-} & = c \cdot \left(rac{33}{z^-}
ight)^rac{1}{6} \ & = 0.3000 \cdot \left(rac{33}{30.0000}
ight)^rac{1}{6} \end{aligned}$$

=0.3048

$$L_{z^-} = l \cdot \left(rac{z^-}{33}
ight)^{ep}$$

$$= 320.0000 \cdot \left(\frac{30.0000}{33}\right)^{0.3333}$$

= 309.9934

$$egin{aligned} Q &= \sqrt{rac{1}{1+0.63\cdot\left(rac{b+h}{L_{z^-}}
ight)^{0.63}}} \ &= \sqrt{rac{1}{1+0.63\cdot\left(rac{14.2688+33.6094}{309.9934}
ight)^{0.63}} \end{aligned}$$

= 0.9151

$$\begin{split} G &= 0.925 \cdot \frac{1 + 1.7 \cdot g_Q \cdot I_{z^-} \cdot Q}{1 + 1.7 \cdot g_v \cdot I_{z^-}} \\ &= 0.925 \cdot \frac{1 + 1.7 \cdot 3.40 \cdot 0.3048 \cdot 0.9151}{1 + 1.7 \cdot 3.40 \cdot 0.3048} \\ &= 0.8749 \end{split}$$

Gust Factor Calculations: Empty, Corroded

Vessel is considered a rigid structure as $n_1 = 16.6341 \text{ Hz} \ge 1 \text{ Hz}.$

$$z^- = \max[0.60 \cdot h, z_{\min}]$$

 $= \max[0.60 \cdot 33.6094, 30.0000]$

=30.0000

$$\begin{split} I_{z^{-}} &= c \cdot \left(\frac{33}{z^{-}}\right)^{\frac{1}{6}} \\ &= 0.3000 \cdot \left(\frac{33}{30.0000}\right)^{\frac{1}{6}} \end{split}$$

=0.3048

$$L_{z^-} = l \cdot \left(rac{z^-}{33}
ight)^{ep}$$

$$= 320.0000 \cdot \left(\frac{30.0000}{33}\right)^{0.3333}$$

= 309.9934

$$egin{aligned} Q &= \sqrt{rac{1}{1+0.63\cdot\left(rac{b+h}{L_{z^-}}
ight)^{0.63}}} \ &= \sqrt{rac{1}{1+0.63\cdot\left(rac{14.2688+33.6094}{309.9934}
ight)^{0.63}} \end{aligned}$$

= 0.9151

$$\begin{split} G &= 0.925 \cdot \frac{1 + 1.7 \cdot g_Q \cdot I_{z^-} \cdot Q}{1 + 1.7 \cdot g_v \cdot I_{z^-}} \\ &= 0.925 \cdot \frac{1 + 1.7 \cdot 3.40 \cdot 0.3048 \cdot 0.9151}{1 + 1.7 \cdot 3.40 \cdot 0.3048} \\ &= 0.8749 \end{split}$$

Gust Factor Calculations: Vacuum, Corroded

Vessel is considered a rigid structure as $n_1 = 6.5524 \text{ Hz} \ge 1 \text{ Hz}.$

$$z^- = \max[0.60 \cdot h, z_{\min}]$$

 $= \max[0.60 \cdot 33.6094, 30.0000]$

=30.0000

$$egin{aligned} & I_{z^-} &= c \cdot \left(rac{33}{z^-}
ight)^rac{1}{6} \ & = 0.3000 \cdot \left(rac{33}{30.0000}
ight)^rac{1}{6} \end{aligned}$$

=0.3048

$$L_{z^-} = l \cdot \left(rac{z^-}{33}
ight)^{ep}$$

$$= 320.0000 \cdot \left(\frac{30.0000}{33}\right)^{0.3333}$$

= 309.9934

$$egin{aligned} Q &= \sqrt{rac{1}{1+0.63\cdot\left(rac{b+h}{L_{z^-}}
ight)^{0.63}}} \ &= \sqrt{rac{1}{1+0.63\cdot\left(rac{14.2688+33.6094}{309.9934}
ight)^{0.63}}} \end{aligned}$$

=0.9151

$$= 0.925 \cdot \frac{1 + 1.7 \cdot 3.40 \cdot 0.3048 \cdot 0.9151}{1 + 1.7 \cdot 3.40 \cdot 0.3048}$$

=0.8749

Table Lookup Va	alues
α = 7.0000, z _g = 365.76 m	[Table 26.11-1, page 269]
c = 0.3000, I = 320.0000, ep = 0.3333	[Table 26.11-1, page 269]
a ⁻ = 0.2500, b ⁻ = 0.4500	[Table 26.11-1, page 269]
z _{min} = 30.0000 ft	[Table 26.11-1, page 269]
g _Q = 3.40	[26.11.4 page 269]
g _v = 3.40	[26.11.4 page 269]

Seismic Code

Building Code: ASCE 7-16 ground supported				
Site Class	С			
Importance Factor, I _e		1.0000		
Spectral Response Acceleration	at short period (% g), S _s	75.00%		
Spectral Response Acceleration	at period of 1 sec (% g), S ₁	75.00%		
Response Modification Coefficie	nt from Table 15.4-2, R	3.0000		
Acceleration-based Site Coeffici	ent, F _a	1.2000		
Velocity-based Site Coefficient, I	Fv	1.4000		
Long-period Transition Period, T	Ĺ	12.0000		
Redundancy factor, ρ	1.0000			
Risk Category (Table 1.5-1)		I		
User Defined Vertical Acceleration	ons Considered	No		
Hazardous, toxic, or explosive co	ontents	No		
Ve	essel Characteristics			
Heigh	t	33.6094 ft (10.24 m)		
	Operating, Corroded	363,801 lb (165,017 kg)		
Weight	Empty, Corroded	57,215 lb (25,952 kg)		
	363,801 lb (165,017 kg)			
Period of Vibration Calculation				
	Operating, Corroded	0.153 sec (f = 6.6 Hz)		
Fundamental Period, T	Empty, Corroded	0.060 sec (f = 16.6 Hz)		
	Vacuum, Corroded	0.153 sec (f = 6.6 Hz)		

The fundamental period of vibration T (above) is calculated using the Rayleigh method of approximation

$$T = 2 \cdot \pi \cdot \sqrt{rac{\sum \left(W_i \cdot y_i^2
ight)}{g \cdot \sum \left(W_i \cdot y_i
ight)}},$$
where

 W_i is the weight of the ith lumped mass, and y_i is its deflection when the system is treated as a cantilever beam.

	12.4 Basic Load Combinations for Allowable Stress Design						
Loa	Load combinations considered in accordance with ASCE section 2.4.5:						
8.	$D + P + P_{s} + 0.7E = (1.0 + 0.14S_{DS})D + P + P_{s} + 0.7\rho Q_{E}$						
10.	0.6 <i>D</i> + <i>P</i> + <i>P</i> _s + 0.7 <i>E</i>	$= (0.6 - 0.14S_{DS})D + P + P_s + 0.7\rho Q_E$					
	Parameter description						
D	= Dead load						
Р	= Internal or external pressure load						
Ps	= Static head load						
Е	= Seismic load	$= E_h + - E_v$	$= \rho Q_E + - 0.2 S_{DS} D$				

Seismic Shear Reports:

<u>Operating, Corroded</u> <u>Empty, Corroded</u> <u>Vacuum, Corroded</u>

Base Shear Calculations

Seismic Shear Report: Operating, Corroded						
Component	Elevation of Bottom above Base (mm)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Seismic Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	
Top Head	9,407.7	2,051,670.3	*	3,218.2	1,025.7	
Cylinder #1	6,969.3	2,051,670.3	0.5345	12,271.1	22,131.4	
Cylinder #2	4,530.9	2,051,670.3	0.5345	18,539.1	61,475	
Cylinder #3	2,092.5	2,051,670.3	0.5345	22,105.7	112,893	
Cylinder #4 (top)	1,524	2,051,670.3	0.4980	22,530.8	125,019.9	
Legs #1	0	2,038,903.0	0.2054	23,130.7	160,037.9	
Cylinder #4 (bottom)	1,524	2,051,670.3	0.4980	569.5	210	
Bottom Head	1,524	2,051,670.3	*	552.5	195.7	
*Moment of Inertia I varies over the length of the component						

Seismic Shear Report: Empty, Corroded						
Component	Elevation of Bottom above Base (mm)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Seismic Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	
Top Head	9,407.7	2,062,603.9	*	1,206.6	434.8	
Cylinder #1	6,969.3	2,062,603.9	0.5345	2,333.1	6,488.7	
Cylinder #2	4,530.9	2,062,603.9	0.5345	3,044.5	14,344	
Cylinder #3	2,092.5	2,062,603.9	0.5345	3,422.2	23,610.6	
Cylinder #4 (top)	1,524	2,062,603.9	0.4980	3,459.7	25,479.9	
Legs #1	0	2,038,903.0	0.2054	3,661.6	30,956.6	
Cylinder #4 (bottom)	1,524	2,062,603.9	0.4980	172.5	81.2	
Bottom Head	1,524	2,062,603.9	*	171	76.8	

*Moment of Inertia I varies over the length of the component

Seismic Shear Report: Vacuum, Corroded						
Component	Elevation of Bottom above Base (mm)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Seismic Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	
Top Head	9,407.7	2,051,670.3	*	3,218.2	1,025.7	
Cylinder #1	6,969.3	2,051,670.3	0.5345	12,271.1	22,131.4	
Cylinder #2	4,530.9	2,051,670.3	0.5345	18,539.1	61,475	
Cylinder #3	2,092.5	2,051,670.3	0.5345	22,105.7	112,893	
Cylinder #4 (top)	1,524	2,051,670.3	0.4980	22,530.8	125,019.9	
Legs #1	0	2,038,903.0	0.2054	23,130.7	160,037.9	
Cylinder #4 (bottom)	1,524	2,051,670.3	0.4980	569.5	210	
Bottom Head	1,524	2,051,670.3	*	552.5	195.7	
*Moment of Inertia I varies over the length of the component						

11.4.4: Maximum considered earthquake spectral response acceleration

The maximum considered earthquake spectral response acceleration at short period, S_{MS}

$$S_{MS} = F_a \cdot S_s = 1.2000 \cdot 75.00/100 = 0.9000$$

The maximum considered earthquake spectral response acceleration at 1 s period, S_{M1}

$$S_{M1} = F_v \cdot S_1 = 1.4000 \cdot 75.00/100 = 1.0500$$

11.4.5: Design spectral response acceleration parameters

Design earthquake spectral response acceleration at short period, S_{DS}

$$S_{DS} = rac{2}{3} \cdot S_{MS} = rac{2}{3} \cdot 0.9000 = 0.6000$$

Design earthquake spectral response acceleration at 1 s period, S_{D1}

$$S_{D1} = rac{2}{3} \cdot S_{M1} = rac{2}{3} \cdot 1.0500 = 0.7000$$

11.6 Seismic Design Category

The Risk Category is II.

The mapped spectral response acceleration parameter at 1-s period, S_1 is 75.00. This vessel is assigned to Seismic Design Category E.

12.4: Seismic Load Combinations: Vertical Term

Factor is applied to dead load.

Compressive Side: $= 1.0 + 0.14 \cdot S_{DS} = 1.0 + 0.14 \cdot 0.6000 = 1.0840$

Tensile Side: $= 0.6 - 0.14 \cdot S_{DS} = 0.6 - 0.14 \cdot 0.6000 = 0.5160$

Base Shear Calculations

Operating, Corroded Empty, Corroded Vacuum, Corroded

Base Shear Calculations: Operating, Corroded

Paragraph 15.4.4: Period Determination

Fundamental Period is taken from the Rayleigh method listed previously in this report.

 $T\,=0.1526\,{\rm sec}$.

12.8.1: Calculation of Seismic Response Coefficient

 C_s is the value computed below, bounded by C_s Min and C_s Max: C_s Min is calculated with equation 15.4-1 and shall not be less than 0.03; in addition, if $S_1 \ge 0.6g$, C_s Min shall not be less than eqn 15.4-2.

 C_s Max calculated with 12.8-3 because (T = 0.1526) <= (T_L = 12.0000)

$$C_s = rac{S_{DS}}{rac{R}{I_e}} = rac{0.6000}{rac{3.0000}{1.0000}} = 0.2000$$

$$C_s \operatorname{Min} = 0.8 \cdot rac{S_1}{rac{R}{I_c}} = 0.8 \cdot rac{0.7500}{rac{3.0000}{1.0000}} = 0.2000$$

$$C_s \operatorname{Max} = rac{S_{D1}}{T \cdot \left(rac{R}{I_e}
ight)} = rac{0.7000}{0.1526 \cdot \left(rac{3.0000}{1.0000}
ight)} = 1.5289$$

 $C_{s} = 0.2000$

12.8.1: Calculation of Base Shear

 $V = C_s \cdot W = 0.2000 \cdot 363,800.5938 = 72,760.12$ lb(33,003.43 kg)

12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh

 $Q_E = V$

 $E_h = 0.7 \cdot \rho \cdot Q_E$ (Only 70% of seismic load considered as per Section 2.4.5)

 $= 0.7 \cdot 1.0000 \cdot 72,760.12$

= 50,932.08 lb(23,102.40 kg)
Base Shear Calculations: Empty, Corroded

Paragraph 15.4.4: Period Determination

Fundamental Period is taken from the Rayleigh method listed previously in this report.

 $T = 0.0601 \sec$.

12.8.1: Calculation of Seismic Response Coefficient

C_s is the value computed below, bounded by C_sMin and C_sMax:

 C_s Min is calculated with equation 15.4-1 and shall not be less than 0.03; in addition, if $S_1 \ge 0.6g$, C_s Min shall not be less than eqn 15.4-2.

 C_s Max calculated with 12.8-3 because (T = 0.0601) <= (T_L = 12.0000)

$$C_s = \frac{S_{DS}}{\frac{R}{I_e}} = \frac{0.6000}{\frac{3.0000}{1.0000}} = 0.2000$$

$$C_s \mathrm{Min} = 0.8 \cdot rac{S_1}{rac{R}{I_e}} = 0.8 \cdot rac{0.7500}{rac{3.0000}{1.0000}} = 0.2000$$

$$C_s ext{Max} = rac{S_{D1}}{T \cdot \left(rac{R}{I_e}
ight)} = rac{0.7000}{0.0601 \cdot \left(rac{3.0000}{1.0000}
ight)} = 3.8813$$

 $C_{s} = 0.2000$

12.8.1: Calculation of Base Shear

 $V = C_s \cdot W = 0.2000 \cdot 57,215.3477 = 11,443.07$ lb(5,190.49 kg)

12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, Eh

$$Q_E = V$$

 $E_h = 0.7 \cdot \rho \cdot Q_E$ (Only 70% of seismic load considered as per Section 2.4.5)

$$= 0.7 \cdot 1.0000 \cdot 11,443.07$$

= 8,010.15 lb(3,633.34 kg)

Base Shear Calculations: Vacuum, Corroded

Paragraph 15.4.4: Period Determination

Fundamental Period is taken from the Rayleigh method listed previously in this report.

 $T=0.1526 \sec$.

12.8.1: Calculation of Seismic Response Coefficient

 C_s is the value computed below, bounded by C_s Min and C_s Max:

 C_s Min is calculated with equation 15.4-1 and shall not be less than 0.03; in addition, if $S_1 \ge 0.6g$, C_s Min shall not be less than eqn 15.4-2.

 C_sMax calculated with 12.8-3 because (T = 0.1526) <= (T_L = 12.0000)

$$C_s = rac{S_{DS}}{rac{R}{I_e}} = rac{0.6000}{rac{3.0000}{1.0000}} = 0.2000$$

$$C_s \operatorname{Min} = 0.8 \cdot \frac{S_1}{rac{R}{I_e}} = 0.8 \cdot \frac{0.7500}{rac{3.0000}{1.0000}} = 0.2000$$

$$C_s \text{Max} = rac{S_{D1}}{T \cdot \left(rac{R}{I_e}
ight)} = rac{0.7000}{0.1526 \cdot \left(rac{3.0000}{1.0000}
ight)} = 1.5289$$

 $C_s=0.2000$

12.8.1: Calculation of Base Shear

 $V = C_s \cdot W = 0.2000 \cdot 363,800.5938 = 72,760.12$ lb(33,003.43 kg)

12.4.2.1 Seismic Load Combinations: Horizontal Seismic Load Effect, E_h

 $Q_E = V$

 $E_{h} = 0.7 \cdot \rho \cdot Q_{E}$ (Only 70% of seismic load considered as per Section 2.4.5)

 $= 0.7 \cdot 1.0000 \cdot 72{,}760.12$

= 50,932.08 lb(23,102.40 kg)

ASME Section VIII Division 1, 2021 Edition Metric						
Com	ponent	F&D Head				
Material		SA-516 70 (II-D Metric p. 20, In. 45)				
Attac	hed To	Cylinder #1				
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	No	No	No	No		
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
Inte	ernal	7	40	5		
Ext	ernal	0.8	40	5		
		Static Liqu	uid Head			
Con	dition	P _s (bar)	H _s (mm)	SG		
Оре	rating	0.07	729	0.98		
Test horizontal		0.44	4,500 1			
		Dimensions				
Inner [Diameter	4,500 mm				
Crown Radius L		4,500 mm				
Knuckle	e Radius r	270 mm				
Minimum	Thickness	23.64 mm				
Corrosion	Inner	1.6 mm				
	Outer	1.64 mm				
Lenç	gth L _{sf}	50.8 mm				
Nominal T	hickness t _{s f}	17 mm				
		Weight and	Capacity			
		Weight (kg) ¹		Capacity (liters) ¹		
New		3,437.18		8,189.03		
Cor	roded	2,960.82		8,220.36		
		Radiog	raphy			
Category A joints Seamless No RT						
Head to shell seam Fu			Full UW-11(a) Type	e 2		
includes straight flange						

Results Summa	ry
Governing condition	internal pressure
Minimum thickness per UG-16	1.5 mm + 3.24 mm = 4.74 mm
Design thickness due to internal pressure (t)	<u>23.64</u> mm
Design thickness due to external pressure (t_e)	<u>14.69</u> mm
Maximum allowable working pressure (MAWP)	<u>7</u> bar
Maximum allowable pressure (MAP)	<u>8.18</u> bar
Maximum allowable external pressure (MAEP)	<u>2.53</u> bar
Straight Flange governs MDMT	-105°C

Note: Endnote 88 used to determine allowable stress.

Design thickness for internal pressure, (Corroded at 40 °C) Appendix 1-4(d)

$$t = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{7.07 \cdot 4,501.6 \cdot 1.7678}{2 \cdot 1,380 \cdot 1 - 0.2 \cdot 7.07} + 3.24 = \underline{23.64} \text{ mm}$$

Maximum allowable working pressure, (Corroded at 40 °C) Appendix 1-4(d)

 $P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 1,380 \cdot 1 \cdot 20.4}{4,501.6 \cdot 1.7678 + 0.2 \cdot 20.4} - 0.07 = \underline{7} \text{ bar}$

Maximum allowable pressure, (New at 21.11 °C) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 1,380 \cdot 1 \cdot 23.64}{4,500 \cdot 1.7706 + 0.2 \cdot 23.64} - 0 = \underline{8.18} \text{ bar}$$

Design thickness for external pressure, (Corroded at 40 °C) UG-33(e)

Equivalent outside spherical radius R_o = Outside crown radius = 4,522 mm

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{4,522 \ / \ 11.45} = 0.000317$$

From Table CS-2 Metric: B = $322.1081 \text{ kg}_{\text{f}}/\text{cm}^2$

$$P_a = \frac{B}{R_o \ / \ t} = \frac{315.8801}{4,522 \ / \ 11.45} = 0.8$$
 bar

t = 11.45 mm + Corrosion = 11.45 mm + 3.24 mm = 14.69 mm

The head external pressure design thickness (t_e) is <u>14.69</u> mm.

Maximum Allowable External Pressure, (Corroded at 40 °C) UG-33(e)

Equivalent outside spherical radius R_o = Outside crown radius = 4,522 mm

$$A = \frac{0.125}{R_o / t} = \frac{0.125}{4,522 / 20.4} = 0.000564$$

From Table CS-2 Metric: B = $572.6195 \text{ kg}_{\text{f}}/\text{cm}^2$

$$P_a = rac{B}{R_o \ / \ t} = rac{561.5479}{4,522 \ / \ 20.4} = 2.533 \ \ {
m bar}$$

The maximum allowable external pressure (MAEP) is 2.53 bar.

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 17}{278.5}\right) \cdot \left(1 - \frac{278.5}{\infty}\right) = 4.5781\%$$

The extreme fiber elongation does not exceed 5%.

Straight Flange on Top Head

ASME Section VIII Division 1, 2021 Edition Metric							
Com	ponent	Cylinder					
Material		SA-516 70 (II-D Metric p. 20, In. 45)					
Impact Tested Normalized		Fine Grain Practice PWHT		Maximize MDMT/ No MAWP			
No	No	No No		No			
		Design Pressure (bar)	Design Design Design Pressure (bar) Temperature (°C) MDMT (°				
Int	ernal	7	40	5			
Ext	ternal	0.8	40	5			
		Static Liquid	Head				
Cor	dition	P _s (bar) H _s (mm)		SG			
Operating		0.07 779.8		0.98			
Test horizontal		0.44 4,500		1			
		Dimension	S				
Inner I	Diameter		4,500 mm				
Le	ngth	50.8 mm					
Nominal	Thickness	17 mm					
Corrosion	Inner	1.6 mm					
Outer		1.64 mm					
		Weight and Ca	pacity				
Weight (kg) Capacity (liters)							
New		95.99 807.94		807.94			
Corroded		77.7 809.09					
		Radiograp	hy				
Longitu	dinal seam	Seamless No RT					
Bottom Circu	mferential seam	Full UW-11(a) Type 2					

Results Summary	
Governing condition	External pressure
Minimum thickness per UG-16	1.5 mm + 3.24 mm = 4.74 mm
Design thickness due to internal pressure (t)	<u>14.82 mm</u>
Design thickness due to external pressure (t _e)	<u>15.81 mm</u>
Design thickness due to combined loadings + corrosion	<u>9.57 mm</u>
Maximum allowable working pressure (MAWP)	<u>8.33 bar</u>
Maximum allowable pressure (MAP)	<u>10.38 bar</u>
Maximum allowable external pressure (MAEP)	<u>1 bar</u>
Rated MDMT	-105 °C

UCS-66 Material Toughness Requirements					
$t_r = rac{0.07\cdot 2,251.6}{1,380\cdot 1 - 0.6\cdot 0.07} =$	0.12 mm				
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.12 \cdot 1}{17 - 3.24} =$	0.0089				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 5°C.					

Design thickness, (at 40 °C) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{7.07 \cdot 2,251.6}{1,380 \cdot 1.00 - 0.60 \cdot 7.07} + 3.24 = \underline{14.82} \text{ mm}$$

Maximum allowable working pressure, (at 40 °C) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{1,380 \cdot 1.00 \cdot 13.76}{2,251.6 + 0.60 \cdot 13.76} - 0.07 = \underline{8.33} \text{ bar}$$

Maximum allowable pressure, (at 21.11 °C) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{1,\!380 \cdot 1.00 \cdot 17}{2,\!250 \!+\!0.60 \cdot 17} = \underline{10.38} \text{ bar}$$

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,196.39}{4,534} = 0.9255$$

$$D_o = \frac{4,534}{4,534} = 0.9255$$

$$\frac{D_o}{t} = \frac{4,534}{12.57} = 360.6878$$

From table G: A = 0.000217

From table CS-2 Metric: $B = 220.6799 \text{ kg/cm}^2 (216.41 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 216.41}{3 \cdot (4,534/12.57)} = 0.8 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 12.57 + 3.24 = 15.81 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,\!196.39}{4,\!534} = 0.9255$$

 $\frac{D_o}{t} = \frac{4{,}534}{13.76} = 329.5058$

From table G: A = 0.000247

From table CS-2 Metric: $B = 251.3806 \text{ kg/cm}^2 (246.5197 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 246.52}{3 \cdot (4,\!534/13.76)} = \underline{1} \text{ bar}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 17}{2,258.5}\right) \cdot \left(1 - \frac{2,258.5}{\infty}\right) = 0.3764\%$$

The extreme fiber elongation does not exceed 5%.

Thickness Required Due to Pressure + External Loads								
Condition	Pressure P (bar)	Allowable Stress Before UG-23 Stress Increase (kg/cm ²)		Temperature	Corrosion	Load	Req'd Thk Due	Req'd Thk Due to
	r (Dai)	s _t	S _c	(0)	C (mm)			compression (mm)
Operating Hot & Corroded	7	1 407 2	769.8	40	3 24	Wind	<u>6.32</u>	<u>6.31</u>
	, í	1,407.2	<u>100.0</u>	40	0.24	Seismic	<u>6.33</u>	<u>6.3</u>
Operating Hot & New	7	1 407 2	843 3	40	0	Wind	<u>6.32</u>	<u>6.3</u>
	,	1,407.2	040.0	40		Seismic	<u>6.32</u>	<u>6.29</u>
Hot Shut Down, Corroded	0	1,407.2	<u>769.8</u>	40	3.24	Wind	<u>0.03</u>	<u>0.04</u>
						Seismic	<u>0.01</u>	<u>0.06</u>
Hot Shut Down, New	0	1 407 2	<u>843.3</u>	40	0	Wind	<u>0.03</u>	<u>0.05</u>
	Ū	1,407.2				Seismic	<u>0.02</u>	<u>0.06</u>
Empty Corrodod	0	1 407 2	<u>769.8</u>	21.11	3.24	Wind	<u>0.03</u>	<u>0.04</u>
	0	1,407.2				Seismic	<u>0.02</u>	<u>0.05</u>
Empty Now		4 407 0	942.2	21.11	11 0	Wind	<u>0.03</u>	<u>0.05</u>
	0	1,407.2	043.5	21.11		Seismic	<u>0.02</u>	<u>0.05</u>
Vacuum		2.24	Wind	<u>1.22</u>	<u>1.24</u>			
	-0.0	1,407.2	<u>709.0</u>	40	3.24	Seismic	<u>1.21</u>	<u>1.25</u>
Hot Shut Down, Corroded, Weight & Eccentric Moments Only	0	1,407.2	<u>769.8</u>	40	3.24	Weight	0.04	0.04

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC}$, (table CS-2 Metric)

$$A = rac{0.125}{R_o/t} = rac{0.125}{2,267/13.76} = 0.000759$$

 $B\,=769.8\,$ kg/cm 2

$$S = rac{1,407.2}{1.00} = 1,407.2 \, {
m kg/cm^{-2}}$$

 $S_{cHC} = \min(B,S) = \frac{769.8 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Hot and New- S_{cHN}, (table CS-2 Metric)

$$A = rac{0.125}{R_o/t} = rac{0.125}{2,267/17} = 0.000937$$

 $B\,=843.3\,$ kg/cm 2

$$S = {1,407.2 \over 1.00} = 1,407.2 \, {
m kg/cm^2}$$

 $S_{cHN} = \min(B,S) = \frac{843.3 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table CS-2 Metric)

$$A = rac{0.125}{R_o/t} = rac{0.125}{2,267/17} = 0.000937$$

 $B\,=843.3\,$ kg/cm 2

$$S = {1,407.2 \over 1.00} = 1,407.2 \, {
m kg/cm}^2$$

 $S_{cCN} = \min(B,S) = 843.3 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and Corroded- $S_{cCC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,267/13.76} = 0.000759$$

$$B = 769.8$$
 kg/cm²

$$S = \frac{1{,}407.2}{1.00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{c\mathbb{C}} = \min(B,S) = \frac{769.8 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Vacuum and Corroded- $\rm S_{cVC}$, (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,267/13.76} = 0.000759$$

 $B\,=769.8\,$ kg/cm 2

$$S = \frac{1{,}407.2}{1.00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{cVC} = \min(B,S) = \frac{769.8 \text{ kg/cm}^2}{2}$

Operating, Hot & Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.251.6}{2 \cdot 1.380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.34 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 26.6 \frac{1}{\pi \cdot 2.258.48} \frac{2}{\cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.60 \cdot 4.871.2}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.02 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 6.34 + 0 - (0.02) \\ &= 6.32 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{4.871.2}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.03 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0 + (0.03) - (6.34)| \\ &= |0 + (0.03) - (6.34)| \\ &= 6.31 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (13.76 - 0 + (0.02))}{2,251.6 - 0.40 \cdot (13.76 - 0 + (0.02))}$$
$$= 15.24 \text{ bar}$$

Operating, Hot & New, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 26.8 \frac{M}{\pi \cdot 2.258.5 \cdot 2 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot 5.541.4}{2 \cdot \pi \cdot 2.258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.02 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 6.33 + 0 - (0.02) \\ &= 6.32 \text{ mm} \\ t_{wcc} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{5.541.4}{2 \cdot \pi \cdot 2.258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.02 \text{ mm} \\ t_{wcc} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{5.541.4}{2 \cdot \pi \cdot 2.258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.03 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0 + (0.03) - (6.33)| \\ &= 6.3 \text{ mm} \\ \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (17 - 0 + (0.02))}{2,250 - 0.40 \cdot (17 - 0 + (0.02))}$$
$$= 18.85 \text{ bar}$$

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 26.6 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 4,871.2 \frac{2}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.03 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0.03)| \\ &= 0.03 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{4,871.2}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0.04) - (0) \\ &= 0.04 \text{ mm} \\ \\ \text{Hot Shut Down, New, Wind, Bottom Seam} \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 26.8 \frac{1}{\pi \cdot 2,258.5^{-2} \cdot 826.96 \cdot 1.00^{-1}} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 5,541.4 \frac{1}{2 \cdot \pi \cdot 2,258.5 \cdot 826.96 \cdot 1.00^{-1}} \cdot 98.0665 \\ &= 0.03 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0.03)| \\ &= 0.03 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{5,541.4}{2 \cdot \pi \cdot 2,258.5 \cdot 826.96 \cdot 1.00^{-1}} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0.05) - (0) \\ &= 0.05 \text{ mm} \\ \\ \text{Empty, Corroded, Wind, Bottom Seam} \end{split}$$

$$\begin{array}{ll} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 26.6 \frac{1}{\pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 4.871.2 \frac{1}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.03 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0.03)| \\ &= 0.03 \text{ mm} \\ t_{w \, c} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{4.871.2}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0.04) - (0) \\ &= 0.04 \text{ mm} \end{array}$$

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 754.91 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.19 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 26.6 \frac{\pi}{\pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= 0.60 \cdot 4.871.2 \frac{2}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.03 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (total, net compressive) \\ &= |-1.19 + 0 - (0.03)| \\ &= 1.22 \text{ mm} \\ t_{wcc} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{4.871.2}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{yc} \qquad (total required, compressive) \\ &= 0 + (0.04) - (-1.19) \\ &= 1.24 \text{ mm} \\ \end{split}$$

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 754.91 \cdot 1.00 \cdot (13.76 - 0 - 0.04)}{2,251.6 - 0.40 \cdot (13.76 - 0 - 0.04)}$$
$$= \underline{9.22} \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

Operating, Hot & Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2,251.6}{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.34 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 1,025.7 \frac{M}{\pi \cdot 2,258.48} \cdot \frac{2}{\cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.01 \text{ mm} \\ t_{w} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.52 \cdot 4,871.2}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.01 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 6.34 + 0.01 - (0.01) \\ &= 6.33 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{1.08 \cdot 4,871.2}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.03 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0.01 + (0.03) - (6.34)| \\ &= 6.33 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (13.76 - 0.01 + (0.01))}{2,251.6 - 0.40 \cdot (13.76 - 0.01 + (0.01))}$$
$$= 15.23 \text{ bar}$$

Operating, Hot & New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 1,089.3 \frac{\pi}{\pi \cdot 2,258.5^{-2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.01 \text{ mm} \\ t_{w} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.52 \cdot 5,541.4}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.02 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 6.33 + 0.01 - (0.02) \\ &= 6.32 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{108 \cdot 5,541.4}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.03 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0.01 + (0.03) - (6.33)| \\ &= 6.29 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (17 - 0.01 + (0.02))}{2,250 - 0.40 \cdot (17 - 0.01 + (0.02))}$$
$$= 18.84 \text{ bar}$$

Hot Shut Down, Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 1.025.7 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98006.5 \\ &= 0.01 \text{ mm} \\ t_{w} &= (0.6 - 0.14 \cdot S_{DS}) \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.52 \cdot 4.871.2 \frac{1}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.02 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.01 - (0.02)| \\ &= 0.01 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 4.871.2}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{c} &= t_{me} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.01 + (0.05) - (0) \\ &= 0.06 \text{ mm} \\ \\ \text{Hot Shut Down, New, Seismic, Bottom Seam} \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 1,089.3 \frac{1}{\pi \cdot 2,258.5^{-2} \cdot 826.96 \cdot 1.00} \cdot 98066.5 \\ &= 0.01 \text{ mm} \\ t_{W} &= (0.6 - 0.14 \cdot S_{DS}) \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.52 \cdot 5,541.4 \frac{1}{2 \cdot \pi \cdot 2,258.5 \cdot 826.96 \cdot 1.00} \cdot 98.0665 \\ &= 0.02 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.01 - (0.02)| \\ &= 0.02 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 5,541.4}{2 \cdot \pi \cdot 2,258.5 \cdot 826.96 \cdot 1.00} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.01 + (0.05) - (0) \\ &= 0.06 \text{ mm} \\ \\ \text{Empty, Corroded, Seismic, Bottom Seam} \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{434.8}{\pi \cdot 2,258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= (0.6 - 0.14 \cdot S_{DS}) \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.52 \cdot 4,871.2 \\ \hline 2 \cdot \pi \cdot 2,258.48 \cdot 754.91 \cdot 1.00 \\ &= 0.02 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0.02)| \\ &= 0.02 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 4,871.2}{2 \cdot \pi \cdot 2,258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{c} &= t_{me} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0.05) - (0) \\ &= 0.05 \text{ mm} \\ \text{Empty, New, Seismic, Bottom Seam} \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 499.9 \frac{M}{\pi \cdot 2,258.5^{-2} \cdot 826.96 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= (0.6 - 0.14 \cdot S_{DS}) \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.52 \cdot 5.541.4 \frac{1}{2 \cdot \pi \cdot 2,258.5 \cdot 826.96 \cdot 1.00} \cdot 98.0665 \\ &= 0.02 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0.02)| \\ &= 0.02 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 5.541.4}{2 \cdot \pi \cdot 2,258.5 \cdot 826.96 \cdot 1.00} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0.05) - (0) \\ &= 0.05 \text{ mm} \\ \textbf{Vacuum, Seismic, Bottom Seam} \end{split}$$

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 754.91 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.19 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 1.025.7 \frac{W}{\pi \cdot 2.258.48} \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0.01 \text{ mm} \\ t_{w} &= (0.6 - 0.14 \cdot S_{DS}) \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \quad (\text{Weight}) \\ &= 0.52 \cdot 4.871.2 \frac{2}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.02 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (total, net compressive) \\ &= |-1.19 + 0.01 - (0.02)| \\ &= 1.21 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \quad (\text{Weight}) \\ &= \frac{1.08 \cdot 4.871.2}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0.01 + (0.05) - (-1.19) \\ &= 1.25 \text{ mm} \end{split}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 754.91 \cdot 1.00 \cdot (13.76 - 0.01 - 0.05)}{2,251.6 - 0.40 \cdot (13.76 - 0.01 - 0.05)}$$
$$= \underline{9.21} \text{ bar}$$

Nozzle #2 (N2)

ASME Section VIII Division 1, 2021 Edition Metric					
100					
Note: round inside edges per UG-76(c)					
Location and Orie	entation				
Located on	Top Head				
Orientation	0°				
End of nozzle to datum line	9,020.35 mm				
Calculated as hillside	No				
Distance to head center, R	0 mm				
Passes through a Category A joint	Νο				
Nozzie	NPS 46 XS DN 1150				
	No				
Material specification	SA-106 B Smls Pipe (II-D Metric p. 16, In. 16)				
Inside diameter, new	1,143 mm				
Pipe nominal wall thickness	12.7 mm				
Pipe minimum wall thickness ¹	11.11 mm				
Corrosion allowance	1.59 mm				
Projection available outside vessel, Lpr	152.4 mm				
Internal projection, h _{new}	1,800 mm				
Projection available outside vessel to flange face, Lf	338.07 mm				
Local vessel minimum thickness	23.64 mm				
Liquid static head included	0 bar				
Reinforcing F	Pad				
Material specification	SA-516 70 (II-D Metric p. 20, In. 45)				
Diameter, D _p	1,368.4 mm				
Thickness, t _e	11.82 mm				
ls split	No				
Welds					
Inner fillet, Leg ₄₁	12.7 mm				
Outer fillet, Leg ₄₂	10 mm				
Lower fillet, Leg ₄₃	14 mm				
Pad groove weld	11.82 mm				
Radiograph	Radiography				
Longitudinal seam	Seamless No RT				
Circumferential seam	Full UW-11(a) Type 1				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.47-2017 Flange					
Description	NPS 46 Class 150 WN A105 Series A				
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 410, In. 32)				
Blind included	Yes				
Rated MDMT	-48°C				
Liquid static head	0 bar				
MAWP rating	19.53 bar @ 40°C				
MAP rating	19.6 bar @ 21.11°C				
Hydrotest rating	30 bar @ 21.11°C				
PWHT performed	No				
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	No				
Impact Tested No					
Circumferential joint radiography	Full UW-11(a) Type 1				
Bore diameter, B (specified by purchaser)	1,150.92 mm				
G	asket				
Type Corrugated Metal					
Description	Corrugated metal Iron or soft steel / Mineral Fiber				
Factor, m	3				
Seating Stress, y	316.381 kg _f /cm ²				
Thickness, T	4.45 mm				
Inner Diameter	1,155 mm				
Outer Diameter	1,160 mm				
Notes					
Flange and blind rated MDMT per UCS-66(b)(1)(b) = -48°C (Coincident ratio = 0.361) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C					

UCS-66 Material Toughness Requirements Nozzle			
Governing thickness, t _g =	11.11 mm		
Exemption temperature from Fig UCS-66M Curve B =	-24.98°C		
$t_r = rac{7.07\cdot573.09}{1,180\cdot1-0.6\cdot7.07} =$	3.45 mm		
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{3.45 \cdot 1}{11.11 - 1.59} =$	0.362		
Reduction in MDMT, T _R from Fig UCS-66.1M =	69.6°C		
$MDMT = \max \left[MDMT - T_R, -48 ight] = \max \left[-24.98 - 69.6, -48 ight] =$	-48°C		
Material is exempt from impact testing at the Design MDMT of 5			

UCS-66 Material Toughness Requirements Pad					
Governing thickness, t _g =					
Exemption temperature from Fig UCS-66M Curve B =					
$t_r = rac{7.07 \cdot 4,501.6 \cdot 1}{2 \cdot 1,380 \cdot 1 - 0.2 \cdot 7.07} =$	11.55 mm				
Stress ratio $= \frac{t_r \cdot E^*}{t_n - c} = \frac{11.55 \cdot 1}{23.64 - 3.24} =$	0.566				
Reduction in MDMT, T _R from Fig UCS-66.1M =	25.7°C				
$MDMT = \max [MDMT - T_R, -48] = \max [-23.65 - 25.7, -48] =$					
Material is exempt from impact testing at the Design MDMT of 5°C.					

Reinforcement Calculations for Internal Pressure

	UG-37 Area Calculation Summary (cm ²)						UG-45 Summary (mm)		
	For P = 7 bar @ 40 °C The opening is adequately reinforced						The nozzle	passes UG-45	
	A required	A A A A_1 A_2 A_3 A_5 A welds					t _{req}	t _{min}	
ſ	131.2942	<u>134.1416</u>	102.5727	4.9993	3.8688	20.0234	2.6774	<u>9.92</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
42,817	37,328	283,639	20,877	464,711	<u>49,879</u>	240,250	

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	<u>5.09</u>	5.36 (corroded)	weld size is adequate			
Nozzle to inside shell fillet (Leg ₄₃)	<u>7.78</u>	8.2 (corroded)	weld size is adequate			

Calculations for internal pressure 7 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_{n} + (t_{n} C_{n}) + (t C)]$
 - = $\max [1,146.18, 573.09 + (12.7 1.59) + (23.64 3.24)]$
 - = 1,146.18 mm

Outer Normal Limit of reinforcement per UG-40

L_H =

- $= \min \left[2.5 \cdot (t C), \ 2.5 \cdot (t_n C_n) + t_e \right]$
- $= \min \left[2.5 \cdot (23.64 3.24), \ 2.5 \cdot (12.7 1.59) + 10.18 \right]$
- = 37.96 mm

Inner Normal Limit of reinforcement per UG-40

- L_{I} = min $[h, 2.5 \cdot (t C), 2.5 \cdot (t_{i} C_{n} C)]$
 - = min $[1,798.4, 2.5 \cdot (23.64 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
 - = 23.78 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{\rm rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{7 \cdot 573.09}{1,180 \cdot 1 - 0.6 \cdot 7}$$

= 3.41 mm

$$t_{\rm r} = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P}$$
$$= \frac{7 \cdot 4,501.6 \cdot 1}{2 \cdot 1,380 \cdot 1 - 0.2 \cdot 7}$$

= 11.42 mm

Required thickness tr per Interpretation VIII-1-07-50

 $t_r = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P} = \frac{7 \cdot 4{,}501.6 \cdot 1.7678}{2 \cdot 1{,}380 \cdot 1 - 0.2 \cdot 7} = 20.19 \text{ mm}$

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} \quad = \quad d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

= $(1,146.18 \cdot 11.42 \cdot 1 + 2 \cdot 11.11 \cdot 11.42 \cdot 1 \cdot (1 - 0.8551))/100$

= <u>131.2942</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>102.5727</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (1,\!146.18 \cdot (1 \cdot 20.4 1 \cdot 11.42) 2 \cdot 11.11 \cdot (1 \cdot 20.4 1 \cdot 11.42) \cdot (1 0.8551)) / 100$
- = 102.5727 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1-f_{r1})$$

- $= (2 \cdot (20.4 + 11.11) \cdot (1 \cdot 20.4 1 \cdot 11.42) 2 \cdot 11.11 \cdot (1 \cdot 20.4 1 \cdot 11.42) \cdot (1 0.8551)) / 100$
- = 5.3664 cm²

 A_2 = smaller of the following= <u>4.9993</u> cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= (5 \cdot (11.11 3.41) \cdot 0.8551 \cdot 20.4) / 100$
- = 6.7161 cm²

- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- $= (2 \cdot (11.11 3.41) \cdot (2.5 \cdot 11.11 + 10.18) \cdot 0.8551)/100$
- = 4.9993 cm²

 A_3 = smaller of the following = <u>3.8688</u> cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 20.4 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>8.2957</u> cm²
- = $5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>3.8688</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 1,798.4 \cdot 9.51 \cdot 0.8551)/100$
- = <u>292.5687</u> cm²
- $A_{41} = Leg^2 \cdot f_{r3}$
 - = $(10.36^2 \cdot 0.8551)/100$
 - = <u>0.9174</u> cm²
- $A_{42} = Leg^2 \cdot f_{r4}$
 - $= (7.66^{2} \cdot 1)/100$
 - $= 0.5865 \text{ cm}^2$
- $A_{43} = Leg^2 \cdot f_{r2}$
 - = $(11.71^2 \cdot 0.8551)/100$
 - = <u>1.1735</u> cm²

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$

- = $((1,365.12 1,146.18 2 \cdot 11.11) \cdot 10.18 \cdot 1)/100$
- $= 20.0234 \text{ cm}^2$
- $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$
 - = 102.5727 + 4.9993 + 3.8688 + 0.9174 + 0.5865 + 1.1735 + 20.0234
 - = <u>134.1416</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:	$t_{ m min}$	$=$ min [19 mm, t_n , t_e] $=$ 10.18 mm
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ 6 mm
	$t_{c(actual)}$	$= 0.7 \cdot Leg = 0.7 \cdot 10.36 = 7.25 \text{ mm}$

Outer fillet: $t_{\min} = \min [19 \text{ mm}, t_e, t] = 10.18 \text{ mm}$ $t_{w(\min)} = 0.5 \cdot t_{\min} = 5.09 \,\,\,\mathrm{mm}$ $t_{w(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 7.66 = 5.36 \,\,\,\text{mm}$

Lower fillet: t_{\min} = min [19 mm, t_n , t] = 11.11 mm $= 0.7 \cdot t_{\min} = \frac{7.78}{1000} \text{ mm}$ $t_{w(\min)}$

> $= 0.7 \cdot \text{Leg} = 0.7 \cdot 11.71 = 8.2 \text{ mm}$ $t_{w(actual)}$

UG-45 Nozzle Neck Thickness Check

UG-45 Noz	zle Ne	ock Thickness Check
Interpretatio	on VIII-	1-83-66 has been applied.
$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{7 \cdot 573.09}{1,180 \cdot 1 - 0.6 \cdot 7} + 1.59$
	=	5 mm
t_a	=	$\max \left[t_{a\mathrm{UG-27}} , t_{a\mathrm{UG-22}} \right]$
	=	max [5, 0]
	=	5 mm
t_{b1}	=	23.43 mm
t_{b1}	=	$\max [t_{b1}, t_{b\mathrm{UG16}}]$
	=	max [23.43, 3.09]
	=	23.43 mm
t_b	=	$\min [t_{b3}, t_{b1}]$
	=	\min [9.92, 23.43]
	=	9.92 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[5, 9.92]$
	=	<u>9.92</u> mm

Available nozzle wall thickness new, t_n = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	0.7.1,203.265 =	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,407.208 =	689.532 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 1,168.4 \cdot 10.36 \cdot 589.6 = 112,075.03 \text{ kg}_{\text{f}}$

(2) Outer fillet weld in shear $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 1,368.4 \cdot 7.66 \cdot 689.532 = 113,489.12 \text{ kg}_f$

(3) Nozzle wall in shear

 $\frac{\pi}{2}$ · Mean nozzle dia · t_n · $S_n = \frac{\pi}{2}$ · 1,157.29· 11.11· 842.286 = 170,150.15 kgf

(5) Lower fillet weld in shear

 $\frac{\pi}{2}$ · Nozzle OD · Leg · $S_l = \frac{\pi}{2}$ · 1,168.4 · 11.71 · 589.6 = 126,760.72 kgf

(6) Upper groove weld in tension

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 1,\!168.4 \cdot 11.82 \cdot 1,\!041.334 = 225,\!875.11 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

$$\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$$

- $= (13,129.42 10,257.27 + 2 \cdot 11.11 \cdot 0.8551 \cdot (1 \cdot 20.4 1 \cdot 11.42)) \cdot 1,407.208$
- = <u>42,817.12</u> kg_f

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $= (499.9345 + 2,002.3381 + 91.7418 + 58.645) \cdot 1,407.208$
- = <u>37,328.45</u> kg_f

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r_1}) \cdot S_v$

- $= (499.9345 + 386.88 + 91.7418 + 117.3546 + 2 \cdot 11.11 \cdot 20.4 \cdot 0.8551) \cdot 1,407.208$
- = <u>20,876.67</u> kg_f

 $W_{3-3} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= \quad (499.9345 + 386.88 + 2,002.3381 + 91.7418 + 58.645 + 117.3546 + 2 \cdot 11.11 \cdot 20.4 \cdot 0.8551) \cdot 1,407.208 + 112.11 \cdot 112.11 \cdot$
- = <u>49,879</u> kg_f

Load for path 1-1 lesser of W or $W_{1-1} = 37,328.45 \text{ kg}_f$ Path 1-1 through (2) & (3) = 113,489.12 + 170,150.15 = <u>283,639.27</u> kg_f Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 20,876.67 \text{ kg}_f$ Path 2-2 through (1), (5), (6) = 112,075.03 + 126,760.72 + 225,875.11 = <u>464,710.85</u> kg_f Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1). Load for path 3-3 lesser of W or $W_{3-3} = 42,817.12 \text{ kg}_f$ Path 3-3 through (2), (5) = 113,489.12 + 126,760.72 = $240,249.84 \text{ kg}_f$ Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (cm ²)						UG-45 Summary (mm)		
For P = 7.07 bar @ 40 °C The opening is adequately reinforced					The nozzle	passes UG-45		
A A A A_1 A_2 A_3 A_5 A welds						t _{req}	t _{min}	
132.6984	132.721	101.1766	<u>4.9748</u>	3.8688	20.0234	2.6774	<u>9.92</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
<u>46,725</u>	<u>37,294</u>	283,639	<u>20,842</u>	464,711	<u>49,845</u>	240,250	

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>5.09</u>	5.36 (corroded)	weld size is adequate				
Nozzle to inside shell fillet (Leg ₄₃)	<u>7.78</u>	8.2 (corroded)	weld size is adequate				

Calculations for internal pressure 7.07 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[1,146.18, 573.09 + (12.7 1.59) + (23.64 3.24)\right]$
- = 1,146.18 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (23.64 3.24), 2.5 \cdot (12.7 1.59) + 10.18]$
- = 37.96 mm

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, \ 2.5 \cdot (t - C), \ 2.5 \cdot (t_i - C_n - C)]$$

- = min $[1,798.4, 2.5 \cdot (23.64 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 23.78 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{7.0749 \cdot 573.09}{1,180 \cdot 1 - 0.6 \cdot 7.0749}$$

= 3.45 mm

$$t_{r} = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P}$$
$$= \frac{7.0749 \cdot 4,501.6 \cdot 1}{2 \cdot S \cdot E - 0.2 \cdot P}$$

$$=$$
 $2 \cdot 1,380 \cdot 1 - 0.2 \cdot 7.0749$

= 11.55 mm

Required thickness tr per Interpretation VIII-1-07-50

 $t_r = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P} = \frac{7.07 \cdot 4,501.6 \cdot 1.7678}{2 \cdot 1,380 \cdot 1 - 0.2 \cdot 7.07} = 20.41 \text{ mm}$

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r2}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_n}$ = 0.8551

$$f_{r4}$$
 = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

- $= (1,146.18 \cdot 11.55 \cdot 1 + 2 \cdot 11.11 \cdot 11.55 \cdot 1 \cdot (1 0.8551))/100$
- = <u>132.6984</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>101.1766</u> cm²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= (1,146.18 \cdot (1 \cdot 20.4 1 \cdot 11.55) 2 \cdot 11.11 \cdot (1 \cdot 20.4 1 \cdot 11.55) \cdot (1 0.8551)) / 100$
- = 101.1766 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (2 \cdot (20.4 + 11.11) \cdot (1 \cdot 20.4 1 \cdot 11.55) 2 \cdot 11.11 \cdot (1 \cdot 20.4 1 \cdot 11.55) \cdot (1 0.8551)) / 100$
- = 5.2935 cm²

 A_2 = smaller of the following= <u>4.9748</u> cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= (5 \cdot (11.11 3.45) \cdot 0.8551 \cdot 20.4) / 100$
- = 6.6832 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- $= (2 \cdot (11.11 3.45) \cdot (2.5 \cdot 11.11 + 10.18) \cdot 0.8551)/100$
- = 4.9748 cm²

 A_3 = smaller of the following= <u>3.8688</u> cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 20.4 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>8.2957</u> cm²
- = $5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>3.8688</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 1,798.4 \cdot 9.51 \cdot 0.8551)/100$
- = <u>292.5687</u> cm²
- $A_{41} = Leg^2 \cdot f_{r3}$
 - = (10.36² · 0.8551)/100
 - = <u>0.9174</u> cm²
- $A_{42} = Leg^2 \cdot f_{r4}$
 - = $(7.66^2 \cdot 1)/100$
 - = <u>0.5865</u> cm²

 $A_{43} = Leg^2 \cdot f_{r2}$

- = $(11.71^2 \cdot 0.8551)/100$
- = <u>1.1735</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r_4}$$

- $= ((1,365.12 1,146.18 2 \cdot 11.11) \cdot 10.18 \cdot 1)/100$
- = <u>20.0234</u> cm²
- $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$
 - = 101.1766 + 4.9748 + 3.8688 + 0.9174 + 0.5865 + 1.1735 + 20.0234
 - = <u>132.721</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check
Inner fillet:	$t_{ m min}$	$=$ min [19 mm, t_n , t_e] $=$ 10.18 mm
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ 6 mm
	$t_{c(actual)}$	$= 0.7 \cdot \text{Leg} = 0.7 \cdot 10.36 = 7.25 \text{ mm}$

= min [19 mm, t_e, t] = 10.18 mm Outer fillet: t_{\min} $t_{w(\min)} = 0.5 \cdot t_{\min} = 5.09 \,\,\,\mathrm{mm}$ $t_{w(\it{actual})} = 0.7 \cdot {
m Leg} = 0.7 \cdot 7.66 = 5.36 ~{
m mm}$

= min [19 mm, t_n, t] = 11.11 mm Lower fillet: t_{\min}

> $= 0.7 \cdot t_{\min} = \underline{7.78} \text{ mm}$ $t_{w(\min)}$ $= 0.7 \cdot \text{Leg} = 0.7 \cdot 11.71 = 8.2 \text{ mm}$ $t_{w(actual)}$

UG-45 Nozzle Neck Thickness Check

UG-45 Noz	zle Ne	eck Thickness Check
Interpretatio	on VIII-	1-83-66 has been applied.
$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{7.0749 \cdot 573.09}{1,180 \cdot 1 - 0.6 \cdot 7.0749} + 1.59$
	=	5.04 mm
t_a	=	$\max [t_{a { m UG-27}}, \ t_{a { m UG-22}}]$
	=	max [5.04, 0]
	=	5.04 mm
t_{b1}	=	23.65 mm
t_{b1}	=	$\max [t_{b1}, t_{b\mathrm{UG16}}]$
	=	max [23.65, 3.09]
	=	23.65 mm
t_b	=	$\min \; [t_{b3}, \; \; t_{b1}]$
	=	\min [9.92, 23.65]
	=	9.92 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[5.04, 9.92]$
	=	<u>9.92</u> mm

Available nozzle wall thickness new, t_n = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	0.7.1,203.265 =	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,407.208 =	689.532 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2}$ · Nozzle OD · Leg · $S_i = \frac{\pi}{2}$ · 1,168.4 · 10.36 · 589.6 = 112,075.03 kgf

(2) Outer fillet weld in shear $\frac{\pi}{2}$ · Pad OD · Leg · $S_o = \frac{\pi}{2}$ · 1,368.4 · 7.66 · 689.532 = 113,489.12 kgf

(3) Nozzle wall in shear

 $\frac{\pi}{2}$ · Mean nozzle dia · t_n · $S_n = \frac{\pi}{2}$ · 1,157.29· 11.11· 842.286 = 170,150.15 kgf

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 1,168.4 \cdot 11.71 \cdot 589.6 = 126,760.72 \text{ kg}_{\text{f}}$

(6) Upper groove weld in tension

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 1,168.4 \cdot 11.82 \cdot 1,041.334$ = 225,875.11 kgf

Loading on welds per UG-41(b)(1)

$$\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$$

- $(13,269.84 10,117.66 + 2 \cdot 11.11 \cdot 0.8551 \cdot (1 \cdot 20.4 1 \cdot 11.55)) \cdot 1,407.208$
- 46,725.18 kgf =

 $W_{1-1} =$ $(A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $(497.4829 + 2,002.3381 + 91.7418 + 58.645) \cdot 1,407.208$ =
- 37,293.95 kgf =

$$W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$$

- $(497.4829 + 386.88 + 91.7418 + 117.3546 + 2 \cdot 11.11 \cdot 20.4 \cdot 0.8551) \cdot 1,407.208$ =
- 20,842.17 kgf =

 $(A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$ $W_{3-3} =$

- $(497.4829 + 386.88 + 2,002.3381 + 91.7418 + 58.645 + 117.3546 + 2 \cdot 11.11 \cdot 20.4 \cdot 0.8551) \cdot 1,407.208 + 10.00000 + 10.0000 + 10.0000 + 10.0000 + 10.0000 + 10.0000 + 10.00000 + 10.00000 + 10.000000 + 10.00000 + 10.000000 + 10.00000 +$ =
- <u>49,844.5</u> kg_f =

Load for path 1-1 lesser of W or W_{1-1} = 37,293.95 kg_f Path 1-1 through (2) & (3) = 113,489.12 + 170,150.15 = 283,639.27 kgf Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 20,842.17 \text{ kg}_f$ Path 2-2 through (1), (5), (6) = 112,075.03 + 126,760.72 + 225,875.11 = <u>464,710.85</u> kg_f Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 46,725.18 \text{ kg}_{f}$ Path 3-3 through (2), (5) = 113,489.12 + 126,760.72 = 240,249.84 kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

	UG-37 Area Calculation Summary (cm ²)							mmary (mm)
	For P = 8.32 bar @ 21.11 °C The opening is adequately reinforced							passes UG-45
A required	A A A A_1 A_2 A_3 A_5 A welds					t _{req}	t _{min}	
<u>155.668</u>	<u>155.6717</u>	<u>114.6353</u>	<u>6.4477</u>	<u>6.896</u>	23.6372	<u>4.0555</u>	<u>8.33</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)								
A	All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength		
<u>60,817</u>	<u>45,684</u>	342,404	<u>30,302</u>	<u>514,797</u>	<u>64,971</u>	<u>299,708</u>		

Calculations for internal pressure 8.32 bar @ 21.11 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_n + (t_n - C_n) + (t - C)]$

- = max [1,143, 571.5 + (12.7 0) + (23.64 0)]
- = 1,143 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (23.64 0), 2.5 \cdot (12.7 0) + 11.82]$
- = 43.57 mm

Inner Normal Limit of reinforcement per UG-40

- $\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t C), 2.5 \cdot (t_i C_n C)]$
 - $= \min \left[1,800, \ 2.5 \cdot (23.64 0), \ 2.5 \cdot (12.7 0 0) \right]$
 - = 31.75 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{8.3213 \cdot 571.5}{1,180 \cdot 1 - 0.6 \cdot 8.3213}$$

= 4.05 mm

Required thickness t_r from UG-37(a)(a)

$$t_{r} = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P}$$
$$= \frac{8.3213 \cdot 4,500 \cdot 1}{2 \cdot 1,380 \cdot 1 - 0.2 \cdot 8.3213}$$

= 13.58 mm

Required thickness tr per Interpretation VIII-1-07-50

$$t_r = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P} = \frac{8.32 \cdot 4,500 \cdot 1.7706}{2 \cdot 1,380 \cdot 1 - 0.2 \cdot 8.32} = 24.04 \text{ mm}$$

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_n}$ = 0.8551

$$f_{r2}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

- $= (1,143 \cdot 13.58 \cdot 1 + 2 \cdot 12.7 \cdot 13.58 \cdot 1 \cdot (1 0.8551))/100$
- = 155.668 cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>114.6353</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r_1})$
- $= (1,143 \cdot (1 \cdot 23.64 1 \cdot 13.58) 2 \cdot 12.7 \cdot (1 \cdot 23.64 1 \cdot 13.58) \cdot (1 0.8551))/100$
- = 114.6353 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1-f_{r1})$$

- $= (2 \cdot (23.64 + 12.7) \cdot (1 \cdot 23.64 1 \cdot 13.58) 2 \cdot 12.7 \cdot (1 \cdot 23.64 1 \cdot 13.58) \cdot (1 0.8551)) / 100$
- = 6.9419 cm²

 A_2 = smaller of the following= <u>6.4477</u> cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= (5 \cdot (12.7 4.05) \cdot 0.8551 \cdot 23.64) / 100$
- = 8.7458 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- $= (2 \cdot (12.7 4.05) \cdot (2.5 \cdot 12.7 + 11.82) \cdot 0.8551)/100$
- = 6.4477 cm²

 A_3 = smaller of the following= <u>6.896</u> cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 23.64 \cdot 12.7 \cdot 0.8551) / 100$
- = <u>12.8347</u> cm²
- = $5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 12.7 \cdot 12.7 \cdot 0.8551) / 100$
- = <u>6.896</u> cm²
- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 1,800 \cdot 12.7 \cdot 0.8551)/100$
- = <u>390.9517</u> cm²

 $A_{41} = Leg^2 \cdot f_{r3}$

- $= (12.7^2 \cdot 0.8551)/100$
- = <u>1.3794</u> cm²

 $A_{42} = Leg^2 \cdot f_{r4}$

= $(10^2 \cdot 1)/100$

 $= 1 \text{ cm}^2$

 $A_{43} = Leg^2 \cdot f_{r2}$

- = $(14^2 \cdot 0.8551)/100$
- = <u>1.6761</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_r$$

- $= ((1,368.4 1,143 2 \cdot 12.7) \cdot 11.82 \cdot 1)/100$
- = <u>23.6372</u> cm²

 $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 114.6353 + 6.4477 + 6.896 + 1.3794 + 1 + 1.6761 + 23.6372
- = <u>155.6717</u> cm²

As Area >= A the reinforcement is adequate.

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

$$t_{a\text{UG-27}} = rac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + ext{Corrosion}$$

= $rac{8.3213 \cdot 571.5}{1,180 \cdot 1 - 0.6 \cdot 8.3213} + 0$
= 4.05 mm

t_a	=	$\max \; [t_{a { m UG-27}}, \; t_{a { m UG-22}}]$
	=	$\max \ [4.05, \ 0]$
	=	4.05 mm
t_{b1}	=	24.04 mm
t_{b1}	=	$\max \left[t_{b1}, \ t_{b\mathrm{UG16}} \right]$
	=	\max [24.04, 1.5]
	=	24.04 mm
t_b	=	$\min \; [t_{b3}, \;\; t_{b1}]$
	=	min [8.33, 24.04]
	=	8.33 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	\max [4.05, 8.33]
	=	<u>8.33</u> mm
Available n	ozzle	wall thickness new, $t_n = 0.875 \cdot 12.7 = 11.11 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	$0.7 \cdot 1,203.265 =$	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,407.208 =	689.532 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 1,168.4 \cdot 12.7 \cdot 589.6 = 137,427.17 \text{ kg}_f$

(2) Outer fillet weld in shear

 $\frac{\pi}{2}$ · Pad OD · Leg · $S_o = \frac{\pi}{2}$ · 1,368.4 · 10 · 689.532 = 148,213.4 kgf

(3) Nozzle wall in shear $\frac{\pi}{2} \cdot \text{Mean nozzle dia} \cdot t_n \cdot S_n = \frac{\pi}{2} \cdot 1,155.7 \cdot 12.7 \cdot 842.286 = 194,190.57 \text{ kg}_{\text{f}}$

(5) Lower fillet weld in shear

 $\frac{\pi}{2}$ · Nozzle OD · Leg · $S_l = \frac{\pi}{2}$ · 1,168.4 · 14 · 589.6 = 151,494.52 kg_f

(6) Upper groove weld in tension

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 1,\!168.4 \cdot 11.82 \cdot 1,\!041.334 = 225,\!875.11 \text{ kg}_{\mathsf{f}}$

 $\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$

 $= (15,566.8 - 11,463.53 + 2 \cdot 12.7 \cdot 0.8551 \cdot (1 \cdot 23.64 - 1 \cdot 13.58)) \cdot 1,407.208$

= <u>60,816.94</u> kg_f

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $= (644.7729 + 2,363.724 + 137.9352 + 99.9998) \cdot 1,407.208$
- = <u>45,684.07</u> kg_f

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

 $= (644.7729 + 689.5954 + 137.9352 + 167.6126 + 2 \cdot 12.7 \cdot 23.64 \cdot 0.8551) \cdot 1,407.208$

= <u>30,301.51</u> kg_f

 $\mathsf{W}_{\textbf{3-3}} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (644.7729 + 689.5954 + 2,363.724 + 137.9352 + 99.9998 + 167.6126 + 2 \cdot 12.7 \cdot 23.64 \cdot 0.8551) \cdot 1,407.208$
- = <u>64,971.24</u> kg_f

Load for path 1-1 lesser of W or $W_{1-1} = 45,684.07 \text{ kg}_{f}$ Path 1-1 through (2) & (3) = 148,213.4 + 194,190.57 = <u>342,403.97</u> kg_{f} Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 30,301.51 \text{ kg}_f$ Path 2-2 through (1), (5), (6) = 137,427.17 + 151,494.52 + 225,875.11 = $514.796.79 \text{ kg}_f$ Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 60,816.94 \text{ kg}_f$ Path 3-3 through (2), (5) = 148,213.4 + 151,494.52 = 299,707.92 kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for External Pressure

	UG-37 A	UG-45 Sui	mmary (mm)					
	For Pe = 0.8 bar @ 40 °C The opening is adequately reinforced							passes UG-45
A required	A A A A_1 A_2 A_3 A_5 A welds					t _{req}	t _{min}	
<u>65.8412</u>	134.6616	102.1869	<u>5.9051</u>	<u>3.8688</u>	20.0234	2.6774	<u>5.55</u>	11.11

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>5.09</u>	5.36 (corroded)	weld size is adequate				
Nozzle to inside shell fillet (Leg ₄₃)	<u>7.78</u>	8.2 (corroded)	weld size is adequate				

Calculations for external pressure 0.8 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[1,146.18, 573.09 + (12.7 1.59) + (23.64 3.24) \right]$
- = 1,146.18 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (23.64 3.24), \ 2.5 \cdot (12.7 1.59) + 10.18 \right]$
- = 37.96 mm

Inner Normal Limit of reinforcement per UG-40

- $\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t C), 2.5 \cdot (t_i C_n C)]$
 - = min $[1,798.4, 2.5 \cdot (23.64 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
 - = 23.78 mm

Nozzle required thickness per UG-28 trn = 2.02 mm

From UG-37(d)(1) required thickness t_r = 11.46 mm

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r_1}))$$

- $= (0.5 \cdot (1,146.18 \cdot 11.46 \cdot 1 + 2 \cdot 11.11 \cdot 11.46 \cdot 1 \cdot (1 0.8551)))/100$
- $= 65.8412 \text{ cm}^2$

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>102.1869</u> cm²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= (1,146.18 \cdot (1 \cdot 20.4 1 \cdot 11.46) 2 \cdot 11.11 \cdot (1 \cdot 20.4 1 \cdot 11.46) \cdot (1 0.8551))/100$
- = 102.1869 cm²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1-f_{r1})$
- $= (2 \cdot (20.4 + 11.11) \cdot (1 \cdot 20.4 1 \cdot 11.46) 2 \cdot 11.11 \cdot (1 \cdot 20.4 1 \cdot 11.46) \cdot (1 0.8551))/100$
- = 5.3464 cm²

 A_2 = smaller of the following= <u>5.9051</u> cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= (5 \cdot (11.11 2.02) \cdot 0.8551 \cdot 20.4) / 100$
- = 7.9329 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- $= (2 \cdot (11.11 2.02) \cdot (2.5 \cdot 11.11 + 10.18) \cdot 0.8551) / 100$
- = 5.9051 cm²

 A_3 = smaller of the following= <u>3.8688</u> cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 20.4 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>8.2957</u> cm²
- = $5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>3.8688</u> cm²

- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 1,798.4 \cdot 9.51 \cdot 0.8551)/100$
- $= 292.5687 \text{ cm}^2$

 $A_{41} = Leg^2 \cdot f_{r3}$

- = $(10.36^2 \cdot 0.8551)/100$
- = <u>0.9174</u> cm²

$$A_{42} = Leg^2 \cdot f_{r4}$$

- = $(7.66^2 \cdot 1)/100$
- = <u>0.5865</u> cm²

 $A_{43} = Leg^2 \cdot f_{r2}$

- = (11.71² · 0.8551)/100
- = <u>1.1735</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- = $((1,365.12 1,146.18 2 \cdot 11.11) \cdot 10.18 \cdot 1)/100$
- $= 20.0234 \text{ cm}^2$

$$Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_{43}$$

= 102.1869 + 5.9051 + 3.8688 + 0.9174 + 0.5865 + 1.1735 + 20.0234

= <u>134.6616</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Lower fillet: $t_{\min} = \min [19 \text{ mm}, t_n, t] = 11.11 \text{ mm}$ $t_{w(\min)} = 0.7 \cdot t_{\min} = 7.78 \text{ mm}$ $t_{w(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 11.71 = 8.2 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied.

$t_{a\mathrm{UG-28}}$	=	3.6 mm
t_a	=	$\max \; [t_{a { m UG-28}} , \; t_{a { m UG-22}}]$
	=	$\max [3.6, 0]$
	=	3.6 mm
t_{b2}	=	5.55 mm
t_{b2}	=	$\max \left[t_{b2}, \ t_{b\mathrm{UG16}} \right]$
	=	$\max[5.55, 3.09]$
	=	5.55 mm
t_b	=	$\min [t_{t3}, \ t_{t2}]$
	=	$\min[9.92, 5.55]$
	=	5.55 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	\max [3.6, 5.55]
	=	<u>5.55</u> mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 12.7 = 11.11 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{338.07}{1,168.4} = 0.2893$$
$$\frac{D_o}{t} = \frac{1,168.4}{2.02} = 579.5594$$

From table G:

From table CS-2 Metric: $B = 354.5898 \text{ kg/cm}^2(347.73 \text{ bar})$

A = 0.000349

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 347.73}{3 \cdot (1,\!168.4/2.02)} = 0.8 \ \, {\rm bar}$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 2.02 + 1.59 = 3.6 \text{ mm}$

Reinforcement Calculations for MAEP

	UG-37 Area Calculation Summary (cm ²)							mmary (mm)
For Pe = 1 bar @ 40 °C The opening is adequately reinforced							The nozzle	passes UG-45
A required	A A A A_1 A_2 A_3 A_5 A welds					t _{req}	t _{min}	
<u>73.5355</u>	<u>119.2417</u>	86.8843	<u>5.7877</u>	<u>3.8688</u>	20.0234	<u>2.6774</u>	<u>6.12</u>	11.11

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>5.09</u>	5.36 (corroded)	weld size is adequate				
Nozzle to inside shell fillet (Leg ₄₃)	<u>7.78</u>	8.2 (corroded)	weld size is adequate				

Calculations for external pressure 1 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[1,146.18, 573.09 + (12.7 1.59) + (23.64 3.24) \right]$
- = 1,146.18 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- $= \min \left[2.5 \cdot (23.64 3.24), 2.5 \cdot (12.7 1.59) + 10.18 \right]$
- = 37.96 mm

Inner Normal Limit of reinforcement per UG-40

 $\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_i - C_n - C)]$

- = min $[1,798.4, 2.5 \cdot (23.64 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 23.78 mm

Nozzle required thickness per UG-28 trn = 2.2 mm

From UG-37(d)(1) required thickness t_r = 12.8 mm

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

- = $(0.5 \cdot (1,146.18 \cdot 12.8 \cdot 1 + 2 \cdot 11.11 \cdot 12.8 \cdot 1 \cdot (1 0.8551)))/100$
- $= 73.5355 \text{ cm}^2$

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>86.8843</u> cm²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= (1,146.18 \cdot (1 \cdot 20.4 1 \cdot 12.8) 2 \cdot 11.11 \cdot (1 \cdot 20.4 1 \cdot 12.8) \cdot (1 0.8551))/100$
- = 86.8843 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (2 \cdot (20.4 + 11.11) \cdot (1 \cdot 20.4 1 \cdot 12.8) 2 \cdot 11.11 \cdot (1 \cdot 20.4 1 \cdot 12.8) \cdot (1 0.8551)) / 100$
- = 4.5458 cm²

 A_2 = smaller of the following= <u>5.7877</u> cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= (5 \cdot (11.11 2.2) \cdot 0.8551 \cdot 20.4) / 100$
- = 7.7755 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_n + t_e) \cdot f_{r2}$
- $= (2 \cdot (11.11 2.2) \cdot (2.5 \cdot 11.11 + 10.18) \cdot 0.8551) / 100$
- = 5.7877 cm²

 A_3 = smaller of the following= <u>3.8688</u> cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 20.4 \cdot 9.51 \cdot 0.8551) / 100$
- $= 8.2957 \text{ cm}^2$
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551)/100$
- = <u>3.8688</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 1,798.4 \cdot 9.51 \cdot 0.8551)/100$
- = <u>292.5687</u> cm²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = $(10.36^2 \cdot 0.8551)/100$
- = <u>0.9174</u> cm²

 $A_{42} = Leg^2 \cdot f_{r4}$

- $= (7.66^2 \cdot 1)/100$
- = <u>0.5865</u> cm²

$$A_{43} = Leg^2 \cdot f_{r2}$$

- = $(11.71^2 \cdot 0.8551)/100$
- = <u>1.1735</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- $= ((1,365.12 1,146.18 2 \cdot 11.11) \cdot 10.18 \cdot 1)/100$
- = <u>20.0234</u> cm²

$$Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_{53}$$

- = 86.8843 + 5.7877 + 3.8688 + 0.9174 + 0.5865 + 1.1735 + 20.0234
- = <u>119.2417</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:	$t_{ m min}$	$=$ min [19 mm, t_n , t_e] $=$ 10.18 mm
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ <u>6</u> mm
	$t_{c(actual)}$	$= 0.7 \cdot \text{Leg} = 0.7 \cdot 10.36 = 7.25 \text{ mm}$
Outer fillet:	$t_{ m min}$	$= \min [19 \text{ mm}, t_e, t] = 10.18 \text{ mm}$

$$t_{w(\min)} = 0.5 \cdot t_{\min} = 5.09 \,\,\,\mathrm{mm}$$

 $t_{w(actual)} = 0.7 \cdot {
m Leg} = 0.7 \cdot 7.66 = 5.36 ~{
m mm}$

Lower fillet: $t_{\min} = \min [19 \text{ mm}, t_n, t] = 11.11 \text{ mm}$

 $t_{w(\min)} = 0.7 \cdot t_{\min} = 7.78 \;\; \mathrm{mm}$

 $t_{w(\mathit{actual})} = 0.7 \cdot \mathrm{Leg} = 0.7 \cdot 11.71 = 8.2 ~\mathrm{mm}$

UG-45 Nozzle Neck Thickness Check

Interpretation VIII-1-83-66 has been applied. $t_{a\rm UG-28}$ = 3.78 mm

t_a	=	$\max\ [t_{a\mathrm{UG-28}},\ t_{a\mathrm{UG-22}}]$
	=	$\max[3.78, 0]$
	=	3.78 mm
t_{b2}	=	6.12 mm
t_{b2}	=	$\max~[t_{b2},~t_{b\mathrm{UG16}}]$
	=	\max [6.12, 3.09]
	=	6.12 mm
t_b	=	$\min \; [t_{b3}, \; t_{b2}]$
	=	$\min [9.92, 6.12]$
	=	6.12 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[3.78, 6.12]$
	=	<u>6.12</u> mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 12.7 = 11.11 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{338.07}{1,168.4} = 0.2893$$
$$\frac{D_o}{t} = \frac{1,168.4}{2.2} = 531.8480$$

From table G: A = 0.000399From table CS-2 Metric: $B = 405.7517 \text{ kg/cm}^2 (397.91 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 397.91}{3 \cdot (1.168.4/2.2)} = 1 \;\; ext{bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 2.2 + 1.59 = 3.78 \text{ mm}$

Nozzle #4 (N4)

ASME Section VIII Division 1,	ASME Section VIII Division 1, 2021 Edition Metric							
ASME SECTION VILLENSION 1, 2021 Edition Metric								
Note: round inside edges per UG-76(c)								
Location and Orie	entation							
Located on	Nozzle #2 (N2)							
Orientation	180°							
Nozzle center line offset to face of parent nozzle	260.67 mm							
End of nozzle to shell center	736.6 mm							
Passes through a Category A joint	NO							
Nozzie	NDS 2 Seb 160 DN 50							
	NPS 2 SCITTOU DIN SU							
Access opening Material specification	SA-106 B Smls Pipe (IL-D Metric p. 16. In. 16)							
Inside diameter, new	42.85 mm							
Pipe nominal wall thickness	8.74 mm							
Pipe minimum wall thickness ¹	7.65 mm							
Corrosion allowance	1.59 mm							
Projection available outside vessel, Lpr	88.9 mm							
Projection available outside vessel to flange face, Lf	152.4 mm							
Local vessel minimum thickness	11.11 mm							
Liquid static head included	0 bar							
Welds								
Inner fillet, Leg ₄₁	8 mm							
Nozzle to vessel groove weld	7 mm							
Radiograph	у							
Longitudinal seam	Seamless No RT							
Circumferential seam	Full UW-11(a) Type 1							

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2017 Flange					
Description	NPS 2 Class 150 WN A105				
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 410, In. 32)				
Blind included	No				
Rated MDMT	-29°C				
Liquid static head	0 bar				
MAWP rating	19.53 bar @ 40°C				
MAP rating	19.6 bar @ 21.11°C				
Hydrotest rating	30 bar @ 21.11°C				
PWHT performed	No				
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	No				
Impact Tested	No				
Circumferential joint radiography	Full UW-11(a) Type 1				
Notes					
Flange rated MDMT per UG-20(f) = -29°C Bolts rated MDMT per Fig UCS-66 note (c) = -48°C					

UCS-66 Material Toughness Requirement	s Nozzle	
$t_r = \frac{19.42 \cdot 23.01}{1,180 \cdot 1 - 0.6 \cdot 19.42} =$	0.38 mm	
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{0.38 \cdot 1}{7.65 - 1.59} =$	0.0631	
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C	
Material is exempt from impact testing at the Desig	MDMT of 5°C.	
6		

Reinforcement Calculations for Internal Pressure

UG	UG-45 Summary (mm)							
	The nozzl	e passes UG-45						
A A A A_1 A_2 A_3 A_5 A welds						t _{req}	t _{min}	
This nozzle is exempt from area calculations per UG-36(c)(3)(a)							<u>5</u>	7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary									
Weld description	Required weld size (mm)	Actual weld size (mm)	Status						
Nozzle to shell fillet (Leg ₄₁)	<u>5.01</u>	5.6	weld size is adequate						
Combined weld check $(t_1 + t_2)$	<u>8.94</u>	11.01	weld size is adequate						
Nozzle to shell groove (Lower)	<u>5.01</u>	5.41	weld size is adequate						

Calculations for internal pressure 7 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_{n} + (t_{n} - C_{n}) + (t - C)]$$

- = max [46.02, 23.01 + (8.74 1.59) + (11.11 1.59)]
- = 46.02 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (11.11 1.59), 2.5 \cdot (8.74 1.59) + 0]$
- = 17.88 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{\rm rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{7 \cdot 23.01}{1,180 \cdot 1 - 0.6 \cdot 7}$$

= 0.14 mm

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{7 \cdot 573.09}{1,180 \cdot 1 - 0.6 \cdot 7}$$
$$= 3.41 \text{ mm}$$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

 $t_1 + t_2 = 11.01 \ge 1.25 \cdot t_{\min} = 8.94$

The combined weld sizes for $t_1 \mbox{ and } t_2 \mbox{ are satisfactory}.$

UG-45 Nozzle Neck Thickness Check

 $\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$ $t_{a\mathrm{UG-27}}$ $\frac{7\cdot 23.01}{1,\!180\cdot 1-0.6\cdot 7}+1.59$ = 1.72 mm = t_a = $\max [t_{a \text{UG-}27}, t_{a \text{UG-}22}]$ $\max[1.72, 0]$ = = 1.72 mm $\frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$ $+ \operatorname{Corrosion}$ t_{b1} = $\frac{7 \cdot 573.09}{1,\!180 \cdot 1 - 0.6 \cdot 7}$ +1.59= 5 mm= $\max [t_{b1}, t_{b\mathrm{UG16}}]$ t_{b1} = $\max[5, 3.09]$ = = 5 mm t_b = $\min[t_{b3}, t_{b1}]$ min [5.01, 5]= = 5 mm $\max [t_a, t_b]$ $t_{
m UG-45}$ = $\max\ [1.72,\ 5]$ _ <u>5</u> mm =

Available nozzle wall thickness new, $t_n = 0.875 \cdot 8.74 = 7.65 \text{ mm}$

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG	UG-45 Sum	nmary (mm)						
For P = 19.42 bar @ 40 °C						The nozzle passes UG-45		
A required	A A A A_1 A_2 A_3 A_5 A welds					t _{req}	t _{min}	
This nozzle is exempt from area calculations per UG-36(c)(3)(a)							<u>5.01</u>	7.65

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16	Weld Sizing	Summary		
Weld description	Required weld size (mm)	Actual weld size (mm)	Status	
Nozzle to shell fillet (Leg ₄₁)	<u>5.01</u>	5.6	weld size is adequate	
Combined weld check $(t_1 + t_2)$	<u>8.94</u>	11.01	weld size is adequate	
Nozzle to shell groove (Lower)	<u>5.01</u>	5.41	weld size is adequate	

Calculations for internal pressure 19.42 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[46.02, \ 23.01 + (8.74 1.59) + (11.11 1.59) \right]$
- = 46.02 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- = min $[2.5 \cdot (11.11 1.59), 2.5 \cdot (8.74 1.59) + 0]$
- = 17.88 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{\rm rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{19.4184 \cdot 23.01}{1,180 \cdot 1 - 0.6 \cdot 19.4184}$$

= 0.38 mm

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{19.4184 \cdot 573.09}{1,180 \cdot 1 - 0.6 \cdot 19.4184}$$
$$= 9.52 \text{ mm}$$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

$$\begin{split} t_{\min} &= \min \; [19 \;\; \text{mm}, \;\; t_n, \;\; t] = 7.15 \;\; \text{mm} \\ t_{1(\min)} \;\; \text{or} \;\; t_{2(\min)} = \; \min \; [6mm, \;\; 0.7 \cdot t_{\min}] = \underline{5.01} \;\; \text{mm} \\ t_{1(actual)} \;\; = 0.7 \cdot \text{Leg} = 0.7 \cdot 8 = 5.6 \;\; \text{mm} \\ \text{The weld size} \;\; t_1 \;\; \text{is satisfactory.} \\ t_{2(actual)} \;\; = 5.41 \;\; \text{mm} \\ \text{The weld size} \;\; t_2 \;\; \text{is satisfactory.} \end{split}$$

 $t_1 + t_2 = 11.01 \ge 1.25 \cdot t_{\min} = 8.94$

The combined weld sizes for $t_1 \mbox{ and } t_2 \mbox{ are satisfactory}.$

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{rcl} t_{aUG-27} & = & \frac{P \cdot R_{a}}{S_{n} \cdot E - 0.6 \cdot P} + \text{Corrosion} \\ & = & \frac{19.4184\cdot23.01}{1,180 \cdot 1 - 0.6 \cdot 19.4184} + 1.59 \\ & = & 1.97 \text{ mm} \\ t_{a} & = & \max\left[t_{aUG-27}, t_{aUG-22}\right] \\ & = & \max\left[1.97, 0\right] \\ & = & 1.97 \text{ mm} \\ t_{b1} & = & \frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion} \\ & = & \frac{19.4184\cdot573.09}{1,180 \cdot 1 - 0.6 \cdot 19.4184} + 1.59 \\ & = & 11.11 \text{ mm} \\ t_{b1} & = & \max\left[t_{b1}, t_{bVG16}\right] \\ & = & \min\left[t_{b3}, t_{b1}\right] \\ & = & \min\left[t_{b3}, t_{b1}\right] \\ & = & \min\left[t_{b3}, t_{b1}\right] \\ & = & \max\left[t_{b1}, t_{b1}\right] \\ & = & \max\left[t_{b1}, t_{b1}\right] \\ & = & \min\left[t_{b3}, t_{b1}\right] \\ & = & \max\left[t_{b1}, t_{b1}\right] \\ & = & \max\left[t_{b1}, t_{b1}\right] \\ & = & \max\left[t_{b1}, t_{b1}\right] \\ & = & \min\left[t_{b2}, t_{b1}\right] \\ & = & \max\left[t_{b1}, t_{b2}\right] \\$$

The nozzle neck thickness is adequate.

Reinforcement Calculations for MAP

The attached ASME B16.5 flange limits the nozzle MAP.

UG	UG-45 Sum	nmary (mm)						
For P = 19.6 bar @ 21.11 °C						The nozzle p	asses UG-45	
A required	A A A A_1 A_2 A_3 A_5 A welds					t _{req}	t _{min}	
This nozzle is	his nozzle is exempt from area calculations per UG-36(c)(3)(a							7.65

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(2)

Calculations for internal pressure 19.6 bar @ 21.11 °C

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_n + (t_n C_n) + (t C)]$
 - = max [42.85, 21.42 + (8.74 0) + (11.11 0)]
 - = 42.85 mm

Outer Normal Limit of reinforcement per UG-40

- L_{H} = min [2.5 · (t C), 2.5 · (t_n C_n) + t_e]
 - = min $[2.5 \cdot (11.11 0), 2.5 \cdot (8.74 0) + 0]$
 - = 21.84 mm

Nozzle required thickness per UG-27(c)(1)

 $\mathbf{t}_{\mathsf{rn}} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

 $= \frac{19.6 \cdot 21.42}{1,180 \cdot 1 - 0.6 \cdot 19.6}$

= 0.36 mm

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{19.6 \cdot 571.5}{1,180 \cdot 1 - 0.6 \cdot 19.6}$$
$$= 9.59 \text{ mm}$$

This opening does not require reinforcement per UG-36(c)(3)(a)

UG-45 Nozzle Neck Thickness Check

t_a	=	$\max\ [t_{a\mathrm{UG-27}},\ t_{a\mathrm{UG-22}}]$
	=	$\max\ [0.36,\ 0]$
	=	0.36 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{19.6\cdot571.5}{1,180\cdot1-0.6\cdot19.6} \ + 0$
	=	9.59 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	\max [9.59, 1.5]
	=	9.59 mm
t_b	=	$\min \; [t_{b3}, \; t_{b1}]$
	=	min $[3.42, 9.59]$
	=	3.42 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [0.36, 3.42]$
	=	<u>3.42</u> mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

Reinforcement Calculations for External Pressure

UG	UG-45 Sum	nmary (mm)					
For Pe = 0.8 bar @ 40 °C						The nozzle passes UG-45	
A A A A_1 A_2 A_3 A_5 A welds					t _{req}	t _{min}	
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>3.09</u>	7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>5.01</u>	5.6	weld size is adequate				
Combined weld check $(t_1 + t_2)$	<u>8.94</u>	11.01	weld size is adequate				
Nozzle to shell groove (Lower)	<u>5.01</u>	5.41	weld size is adequate				

Calculations for external pressure 0.8 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[46.02, \ 23.01 + (8.74 1.59) + (11.11 1.59) \right]$
- = 46.02 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (11.11 1.59), 2.5 \cdot (8.74 1.59) + 0]$
- = 17.88 mm

Nozzle required thickness per UG-28 trn = 0.26 mm

From UG-37(d)(1) required thickness $t_r = 2.02 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

 $t_1 + t_2 = 11.01 \ge 1.25 \cdot t_{\min} = 8.94$

The combined weld sizes for t_1 and t_2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1.84 mm

t_a	=	$\max\ [t_{a\mathrm{UG-28}},\ t_{a\mathrm{UG-22}}]$
	=	$\max[1.84, 0]$
	=	1.84 mm
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{0.8{\cdot}573.09}{1{,}180{\cdot}1{-}0.6{\cdot}0.8} + 1.59$
	=	1.98 mm
t_{b2}	=	$\max\left[t_{b2}, \ t_{b\mathrm{UG16}}\right]$
	=	$\max[1.98, 3.09]$
	=	3.09 mm
t_b	=	$\min [t_{i3}, \ t_{b2}]$
	=	min $[5.01, 3.09]$
	=	3.09 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	max [1.84, 3.09]
	=	<u>3.09</u> mm
Available i	nozzle	wall thickness new, $t_n = 0.875 \cdot 8.74 = 7.65$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{153.18}{60.33} = 2.5392$$
$$\frac{D_o}{t} = \frac{60.33}{0.26} = 235.5862$$

From table G: A = 0.000141

From table CS-2 Metric: $B = 144.1362 \text{ kg/cm}^2(141.35 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 141.35}{3 \cdot (60.33/0.26)} = 0.8$$
 bar

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 0.26 + 1.59 = \textbf{1.84} \text{ mm}$

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)						UG-45 Sum	nmary (mm)	
For Pe = 1 bar @ 40 °C						The nozzle p	basses UG-45	
A A A A_1 A_2 A_3 A_5 A welds							t _{req}	t _{min}
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	-36(c)(3)(a)	<u>3.09</u>	7.65

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>5.01</u>	5.6	weld size is adequate				
Combined weld check $(t_1 + t_2)$	<u>8.94</u>	11.01	weld size is adequate				
Nozzle to shell groove (Lower)	5.01	5.41	weld size is adequate				

Calculations for external pressure 1 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[46.02, \ 23.01 + (8.74 1.59) + (11.11 1.59) \right]$
- = 46.02 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (11.11 1.59), \ 2.5 \cdot (8.74 1.59) + 0 \right]$
- = 17.88 mm

Nozzle required thickness per UG-28 t_{rn} = 0.28 mm

From UG-37(d)(1) required thickness t_r = 2.2 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(d) Weld Check

$$\begin{split} t_{\min} &= \min \; [19 \; \mbox{mm}, \; t_n, \; t] = 7.15 \; \mbox{mm} \\ t_{1(\min)} \; \mbox{or} \; t_{2(\min)} &= \min \; [6mm, \; 0.7 \cdot t_{\min}] = \underline{5.01} \; \mbox{mm} \\ t_{1(actual)} \; &= 0.7 \cdot \mbox{Leg} = 0.7 \cdot 8 = 5.6 \; \mbox{mm} \\ \end{split} \\ The weld size \; t_1 \; \mbox{is satisfactory.} \\ t_{2(actual)} \; &= 5.41 \; \mbox{mm} \\ The weld size \; t_2 \; \mbox{is satisfactory.} \end{split}$$

 $t_1 + t_2 = 11.01 \ge 1.25 \cdot t_{\min} = 8.94$

The combined weld sizes for t_1 and t_2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

$t_{a\rm UG-28}$	=	1.87 mm
t_a	=	$\max \; [t_{a\mathrm{UG-28}} , \; t_{a\mathrm{UG-22}}]$
	=	$\max\ [1.87,\ 0]$
	=	1.87 mm
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{0.9975 \cdot 573.09}{1,180 \cdot 1 - 0.6 \cdot 0.9975} + 1.59$
	=	2.07 mm
t_{b2}	=	$\max \ [t_{b2}, \ t_{b\mathrm{UG16}}]$
	=	\max [2.07, 3.09]
	=	3.09 mm
t_b	=	$\min \left[t_{b3}, \hspace{0.1cm} t_{b2} \right]$
	=	min $[5.01, 3.09]$
	=	3.09 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	max [1.87, 3.09]
	=	<u>3.09</u> mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 8.74 = 7.65 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{153.18}{60.33} = 2.5392$$
$$\frac{D_o}{t} = \frac{60.33}{0.28} = 215.5924$$

From table G: A = 0.000161

From table CS-2 Metric: $B = 164.4858 \text{ kg/cm}^2(161.31 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 161.31}{3 \cdot (60.33/0.28)} = 1$$
 bar

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0.28 + 1.59 = \textbf{1.87} \text{ mm}$

Bolted Cover #3

ASME Section VIII Division 1, 2021 Edition Metric								
Com	ponent		Bolted Cover					
Ma	terial	SA-516 70 (II-D Metric p. 20, In. 45)						
Attac	hed To	ASME B16.5/16.47 flange attached to Nozzle #2 (N2)						
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT No MAWP				
No	No	No	No	No				
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)				
Inte	ernal	7	40	5				
Ext	ernal	0.8	40	5				
		Static Liqu	uid Head					
Con	dition	P _s (bar)	H _s (mm)	SG				
Test h	orizontal	0.28	2,825.46	1				
		Dimens	sions					
Outer	Diameter		1,454.15 mm					
Bolt C	ircle, BC		1,365.25 mm					
Nominal	Thickness		68 mm					
Corrosion	Inner		1.59 mm					
Concesion	Outer		0 mm					
		Weight and	Capacity					
		Wei	ght (kg)	Capacity (liters)				
N	lew	8	0					
Cor	roded	8	33.48	0				
		Radiog	raphy					
Catego	ry A joints		Seamless No RT					

Results Summa	ry		
Governing condition	gasket seating		
Minimum thickness per UG-16	1.5 mm + 1.59 mm = 3.09 mm		
Design thickness due to internal pressure (t)	<u>56.1</u> mm		
Design thickness due to external pressure (t_e)	<u>16.85</u> mm		
Design thickness due to gasket seating	<u>67.31</u> mm		
Maximum allowable working pressure (MAWP)	<u>10.39</u> bar		
Maximum allowable pressure (MAP)	<u>10.89</u> bar		
Maximum allowable external pressure (MAEP)	<u>15.14</u> bar		
Rated MDMT	-29°C		

UCS-66 Material Toughness Requirements					
Governing thickness, t _g =	17 mm				
MDMT =	-29°C				
Material is exempt from impact testing per UG-20(f) at the Design MDMT of 5°C.					

Figure UG-34 Diameter

 $d = BC - 2 \cdot h_G = 1,365.25 - 2 \cdot 103.88$ = 1,157.5 mm

Design thickness, (at 40 °C) UG-34(c)(2), flange operating

$$t = d \cdot \sqrt{\frac{C \cdot P}{S \cdot E} + \frac{1.9 \cdot W \cdot h_G}{S \cdot E \cdot d^3}} + \text{Corrosion}$$

$$= 1,157.5 \cdot \sqrt{\frac{0.3 \cdot 7.14}{1,407.208 \cdot 1} + \frac{100 \cdot 1.9 \cdot 77,019.81 \cdot 103.88}{1,407.208 \cdot 1 \cdot 1,157.5^{-3}}} + 1.59$$

= 56.1 mm

Design thickness, (at 21.11 °C) UG-34(c)(2), gasket seating

$$t = d \cdot \sqrt{\frac{1.9 \cdot W \cdot h_G}{S \cdot E \cdot d^3}} + \text{Corrosion}$$

= 10 \cdot 1,157.5 \cdot \sqrt{\frac{1.9 \cdot 356,476.56 \cdot 103.88}{1,407.208 \cdot 1 \cdot 1,157.5 \cdot 3}} + 1.59
= \frac{67.31}{1.31} \text{ mm}

Maximum allowable working pressure, (at 40 °C)

$$P = \frac{S \cdot E}{C} \cdot \left(\left(\frac{t}{d}\right)^2 - \frac{1.9 \cdot W \cdot h_G}{S \cdot E \cdot d^3} \right) - P_s$$
$$= \frac{\frac{1.407.208}{1.02} \cdot 1}{0.3} \cdot \left(\left(\frac{66.41}{1.157.5}\right)^2 - \frac{1.9 \cdot 100 \cdot 114,299.34 \cdot 103.88}{1.407.208 \cdot 1 \cdot 1.157.5^{-3}} \right) - 0$$
$$= 10.39 \text{ bar}$$

Maximum allowable pressure, (at 21.11 °C)

$$P = \frac{S \cdot E}{C} \cdot \left(\left(\frac{t}{d}\right)^2 - \frac{1.9 \cdot W \cdot h_G}{S \cdot E \cdot d^3} \right)$$
$$= \frac{\frac{1,407.208}{1.02} \cdot 1}{0.3} \cdot \left(\left(\frac{68}{1,157.5}\right)^2 - \frac{1.9 \cdot 100 \cdot 119,828.94 \cdot 103.88}{1,407.208 \cdot 1 \cdot 1,157.5}\right)^3$$
$$= \underline{10.89} \text{ bar}$$

Design thickness for external pressure, (at 40 °C) U-2(g)

$$t = d \cdot \sqrt{\frac{C \cdot P_a}{S \cdot E}} + \text{Corrosion} = 1,157.5 \cdot \sqrt{\frac{0.3 \cdot 0.82}{1,407.208 \cdot 1}} + 1.59 = \underline{16.85} \text{ mm}$$

Maximum allowable external pressure, (at 40 °C) U-2(g)

$$P_a = rac{S \cdot E}{C} \cdot \left(rac{t}{d}
ight)^2 = rac{rac{1.407.208}{1.02} \cdot 1}{0.3} \cdot \left(rac{66.41}{1,157.5}
ight)^2 = rac{15.14}{15.14} \;\; \mathrm{bar}$$

Nozzle #5 (N5)

ASME Section VIII Divis	sion 1, 2021 Edition Metric				
	68 14 14				
Note: round inside edges per UG-76(c)					
Location ar	nd Orientation				
Located on	Bolted Cover #3				
Orientation	90°				
Distance to head center, R	0 mm				
Passes through a Category A joint No					
N	ozzle				
Description	NPS 10 (Thk = 0.438") DN 250				
Access opening	No				
Material specification	SA-106 B Smls Pipe (II-D Metric p. 16, In. 16)				
Inside diameter, new	250.8 mm				
Pipe nominal wall thickness	11.13 mm				
Pipe minimum wall thickness ¹	9.73 mm				
Corrosion allowance	1.59 mm				
Projection available outside vessel, Lpr	152.4 mm				
Local vessel minimum thickness	68 mm				
Liquid static head included 0 bar					
W	/elds				
Inner fillet, Leg ₄₁	22 mm				
Nozzle to vessel groove weld	14 mm				
Radio	ography				
Longitudinal seam	Seamless No RT				
Circumferential seam	Spot UW-11(a)(5)(b) only Type 1				
	•				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

UCS-66 Material Toughness Requirements Nozzle					
$t_r = rac{6.24\cdot 126.99}{1,\!180\cdot 1 - 0.6\cdot 6.24} =$	0.67 mm				
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.67 \cdot 1}{9.73 - 1.59} =$	0.0827				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MDMT of 5°C.					

Reinforcement Calculations for Internal Pressure

UG-39 Area Calculation Summary (cm ²)						UG-45 Su	mmary (mm)	
For P = 7 bar @ 40 °C The opening is NOT adequately reinforced					The nozzle	e passes UG-45		
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
84.3662	<u>9.4555</u>	<u>1.7361</u>	3.5806			<u>4.1387</u>	<u>9.7</u>	9.73

UG-41 Weld Failure Path Analysis Summary (kg_f) All failure paths are stronger than the applicable weld loads Weld load Weld load Weld load Path 1-1 Path 2-2 W₁₋₁ W₂₋₂ w strength strength <u>116,436</u> <u>10,863</u> <u>88,887</u> 26,107 <u>111,073</u>

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	15.4	weld size is adequate				
Combined weld check $(t_1 + t_2)$	<u>11.92</u>	27.81	weld size is adequate				
Nozzle to shell groove (Lower)	<u>6</u>	12.41	weld size is adequate				

Calculations for internal pressure 7 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[253.97, \ 126.99 + (11.13 1.59) + (68 1.59) \right]$
- = 253.97 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e

- = min $[2.5 \cdot (68 1.59), 2.5 \cdot (11.13 1.59) + 0]$
- = 23.84 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{\rm rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

$$= \frac{7 \cdot 126.99}{1,180 \cdot 1 - 0.6 \cdot 7}$$

= 0.76 mm

Required thickness t_r from UG-34

The static head of liquid has not been included in the total design load because the vessel is supported below the flange.

$$W = 0.785 \cdot G^2 \cdot P + 2 \cdot b \cdot 3.14 \cdot G \cdot m \cdot P$$

= 0.785 \cdot 1,157.5 \cdot 2 \cdot \frac{7.138}{100} + 2 \cdot 1.25 \cdot 3.14 \cdot 1,157.5 \cdot 3 \cdot \frac{7.138}{1007.138} / 100

$$t_{r} = d \cdot \sqrt{\frac{C \cdot P}{S \cdot E} + \frac{1.9 \cdot W \cdot h_{g}}{S \cdot E \cdot d^{3}}}$$

= 1,157.5 \cdot \sqrt{\frac{0.3 \cdot 7.138}{1,407.208 \cdot 1} + \frac{1.9 \cdot 77,019.81 \cdot 103.88}{\frac{1.407.208}{100} \cdot 1 \cdot 1,157.5 \cdot 3}}
= 54.52 mm

Gasket seating

t_r

$$= d \cdot \sqrt{\frac{1.9 \cdot W \cdot h_G}{S \cdot E \cdot d^3}}$$
$$= 1,157.5 \cdot \sqrt{\frac{1.9 \cdot 356,476.56 \cdot 103.88}{\frac{1,407.208}{100} \cdot 1 \cdot 1,157.5^{-3}}}$$

= 65.72 mm

Area required per UG-39

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_n}$ = 0.8551

$$\mathsf{A} = 0.5 \cdot d \cdot t_r + t_r \cdot t_n \cdot (1 - f_{r1})$$

 $= (0.5 \cdot 253.97 \cdot 65.72 + 65.72 \cdot 9.54 \cdot (1 - 0.8551))/100$

= <u>84.3662</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>1.7361</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (253.97 \cdot (1 \cdot 66.41 1 \cdot 65.72) 2 \cdot 9.54 \cdot (1 \cdot 66.41 1 \cdot 65.72) \cdot (1 0.8551)) / 100$
- = 1.7361 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1-f_{r1})$$

- $= (2 \cdot (66.41 + 9.54) \cdot (1 \cdot 66.41 1 \cdot 65.72) 2 \cdot 9.54 \cdot (1 \cdot 66.41 1 \cdot 65.72) \cdot (1 0.8551)) / 100$
- = 1.0303 cm²

 A_2 = smaller of the following= <u>3.5806</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (9.54 0.76) \cdot 0.8551 \cdot 152.4) / 100$
- = 22.8858 cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= (5 \cdot (9.54 0.76) \cdot 0.8551 \cdot 9.54) / 100$
- = 3.5806 cm²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = $(22^2 \cdot 0.8551)/100$
- = <u>4.1387</u> cm²

 $Area = A_1 + A_2 + A_{41}$

- = 1.7361+3.5806 + 4.1387
- = <u>9.4555</u> cm²
- ** As Area < A the reinforcement is NOT adequate. **

UW-16(d) Weld Check

 $t_1 + t_2 = 27.81 \ge 1.25 \cdot t_{\min} = 11.92$

The combined weld sizes for t_1 and t_2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P} + \text{Corrosion}$
	=	$\frac{7\cdot 126.99}{1,180\cdot 1-0.6\cdot 7}+1.59$
	=	2.34 mm
t_a	=	$\max \left[t_{a\mathrm{UG-27}} , \; t_{a\mathrm{UG-22}} ight]$
	=	$\max \ [2.34, \ 0]$
	=	2.34 mm
t_{b1}	=	67.31 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max [67.31, 3.09]$

= 67.31 mm

 $egin{array}{rcl} t_b &=& \min \left[t_{b3}, \ t_{b1}
ight] \ &=& \min \left[9.7, \ 67.31
ight] \ &=& 9.7 \ \mathrm{mm} \ t_{\mathrm{UG-45}} &=& \max \left[t_a, \ t_b
ight] \end{array}$

=

= max [2.34, 9.7]

<u>9.7</u> mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 11.13 = 9.73 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Nozzle wall in shear:	0.7.1,203.265 =	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2}$ · Nozzle OD · Leg · $S_i = \frac{\pi}{2}$ · 273.05 · 22 · 589.6 = 55,634.24 kgf

(3) Nozzle wall in shear

 $\frac{\pi}{2} \cdot \text{Mean nozzle dia} \cdot t_n \cdot S_n = \frac{\pi}{2} \cdot 263.51 \cdot 9.54 \cdot 842.286 = 33,252.46 \text{ kg}_{\mathsf{f}}$

(4) Groove weld in tension

 $\frac{\pi}{2}$ · Nozzle OD · t_w · $S_g = \frac{\pi}{2}$ · 273.05 · 12.41 · 1,041.334 = 55,438.5 kgf

Loading on welds per UG-41(b)(1)

- $\mathsf{W} \quad = \quad (A A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t F \cdot t_r)) \cdot S_v$
 - $= \quad (8,\!436.6217 173.6126 + 2 \cdot 9.54 \cdot 0.8551 \cdot (1 \cdot 66.41 1 \cdot 65.72)) \cdot 1,\!407.208$
 - = <u>116,436.38</u> kg_f

$$W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_u$$

- $= (358.0638 + 0 + 413.8701 + 0) \cdot 1,407.208$
- = <u>10,862.72</u> kg_f

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (358.0638 + 0 + 413.8701 + 0 + 2 \cdot 9.54 \cdot 66.41 \cdot 0.8551) \cdot 1,407.208$
- = <u>26,106.72</u> kg_f

Load for path 1-1 lesser of W or $W_{1-1} = 10,862.72 \text{ kg}_f$ Path 1-1 through (1) & (3) = 55,634.24 + 33,252.46 = <u>88,886.71 kg_f</u> Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1). Load for path 2-2 lesser of W or $W_{2-2} = 26,106.72 \text{ kg}_f$ Path 2-2 through (1), (4) = 55,634.24 + 55,438.5 = $\frac{111,072.75}{111,072.75} \text{ kg}_f$ Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).
Reinforcement Calculations for MAWP

Available reinforcement per UG-39 governs the MAWP of this nozzle.

UG-39 Area Calculation Summary (cm ²)					UG-45 Su	mmary (mm)		
For P = 0 bar @ 40 °C The opening is NOT adequately reinforced				The nozzle	passes UG-45			
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
80.5745	<u>17.1838</u>	<u>9.1561</u>	<u>3.889</u>			<u>4.1387</u>	<u>9.7</u>	9.73

UG-41 Weld Failure Path Analysis Summary (kgf) All failure paths are stronger than the applicable weld loads Weld load Weld load Weld load Path 1-1 Path 2-2 W₁₋₁ W₂₋₂ w strength strength 11,297 26,541 101,337 88,887 <u>111,073</u>

UW-16 Weld Sizing Summary								
Weld description	Required weld size (mm)	Actual weld size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	15.4	weld size is adequate					
Combined weld check $(t_1 + t_2)$	<u>11.92</u>	27.81	weld size is adequate					
Nozzle to shell groove (Lower)	<u>6</u>	12.41	weld size is adequate					

Calculations for internal pressure 0 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[253.97, \ 126.99 + (11.13 1.59) + (68 1.59) \right]$
- = 253.97 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min [2.5 · (t - C), 2.5 · (t_n - C_n) + t_e]

- $= \min \left[2.5 \cdot (68 1.59), \ 2.5 \cdot (11.13 1.59) + 0 \right]$
- = 23.84 mm

Nozzle required thickness per UG-27(c)(1)

t _{rn}	=	$\frac{P\cdot R_n}{S_n\cdot E - 0.6\cdot P}$
	=	$\frac{0\cdot 126.99}{1,\!180\cdot 1-0.6\cdot 0}$

= 0 mm

Required thickness t_r from UG-34

The static head of liquid has not been included in the total design load because the vessel is supported below the flange.

$$W = 0.785 \cdot G^2 \cdot P + 2 \cdot b \cdot 3.14 \cdot G \cdot m \cdot P$$

= 0.785 \cdot 1,157.5 \cdot 2 \cdot \frac{0}{100} + 2 \cdot 1.25 \cdot 3.14 \cdot 1,157.5 \cdot 3 \cdot \frac{0}{1000} / 100
= 0 \kg_f

$$\begin{aligned} \mathsf{t}_{\mathsf{r}} &= d \cdot \sqrt{\frac{C \cdot P}{S \cdot E} + \frac{1.9 \cdot W \cdot h_g}{S \cdot E \cdot d^3}} \\ &= 1,157.5 \cdot \sqrt{\frac{0.3 \cdot 0}{1,407.208 \cdot 1} + \frac{1.9 \cdot 0 \cdot 103.88}{\frac{1.407.208}{100} \cdot 1 \cdot 1,157.5^3}} \\ &= 0.0094 \text{ mm} \end{aligned}$$

Gasket seating

$$t_{\rm r} = d \cdot \sqrt{\frac{1.9 \cdot W \cdot h_G}{S \cdot E \cdot d^3}}$$
$$= 1,157.5 \cdot \sqrt{\frac{1.9 \cdot 325,153.55 \cdot 103.88}{\frac{1,407.208}{100} \cdot 1 \cdot 1,157.5^{-3}}}$$
$$= 62.77 \text{ mm}$$

Area required per UG-39

Allowable stresses: $S_n = 1,203.265$, $S_v = 1,407.208 \text{ kg}_f/\text{cm}^2$

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$\mathsf{A} = 0.5 \cdot d \cdot t_r + t_r \cdot t_n \cdot (1 - f_{r1})$$

- $= (0.5 \cdot 253.97 \cdot 62.77 + 62.77 \cdot 9.54 \cdot (1 0.8551))/100$
- = <u>80.5745</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>9.1561</u> cm²

- $= \quad d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (253.97 \cdot (1 \cdot 66.41 1 \cdot 62.77) 2 \cdot 9.54 \cdot (1 \cdot 66.41 1 \cdot 62.77) \cdot (1 0.8551)) / 100$
- = 9.1561 cm²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (2 \cdot (66.41 + 9.54) \cdot (1 \cdot 66.41 1 \cdot 62.77) 2 \cdot 9.54 \cdot (1 \cdot 66.41 1 \cdot 62.77) \cdot (1 0.8551)) / 100$
- = 5.4355 cm²

 A_2 = smaller of the following= <u>3.889</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (9.54 0) \cdot 0.8551 \cdot 152.4) / 100$
- = 24.8587 cm²
- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= (5 \cdot (9.54 0) \cdot 0.8551 \cdot 9.54) / 100$
- = 3.889 cm²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = $(22^2 \cdot 0.8551)/100$
- = <u>4.1387</u> cm²

 $Area = A_1 + A_2 + A_{41}$

 $= \qquad 9.1561 {+} 3.889 {+} 4.1387$

= <u>17.1838</u> cm²

** As Area < A the reinforcement is NOT adequate. **

UW-16(d) Weld Check

 $t_{\min} = \min [19 \text{ mm}, t_n, t] = 9.54 \text{ mm}$

 $t_1 + t_2 = 27.81 \ge 1.25 \cdot t_{\min} = \underline{11.92}$

The combined weld sizes for t_1 and t_2 are satisfactory.

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{0\cdot 126.99}{1,\!180\cdot 1-0.6\cdot 0}+1.59$
	=	1.59 mm
t_a	=	$\max[t_{aUG_{2}27}, t_{aUG_{2}22}]$
u .		[*#0G-21; *#0G-22]
	=	$\max\ [1.59,\ 0]$
	=	1.59 mm

64.36 mm

=

 t_{b1}

t_{b1}	=	$\max~[t_{b1},~t_{b\mathrm{UG16}}]$
	=	$\max[64.36, 3.09]$
	=	64.36 mm
t_b	=	$\min\ [t_{b3},\ t_{b1}]$
	=	$\min [9.7, 64.36]$
	=	9.7 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[1.59, 9.7]$
	=	9.7 mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 11.13 = 9.73 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Nozzle wall in shear:	0.7.1,203.265 =	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear $\frac{\pi}{2}$ · Nozzle OD · Leg · $S_i = \frac{\pi}{2}$ · 273.05 · 22 · 589.6 = 55,634.24 kgf

(3) Nozzle wall in shear $\frac{\pi}{2} \cdot \text{Mean nozzle dia} \cdot t_n \cdot S_n = \frac{\pi}{2} \cdot 263.51 \cdot 9.54 \cdot 842.286 = 33,252.46 \text{ kg}_{\text{f}}$

(4) Groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 273.05 \cdot 12.41 \cdot 1,041.334 = 55,438.5 \text{ kg}_{\mathsf{f}}$

Loading on welds per UG-41(b)(1)

$$\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S$$

 $(8,\!057.4488 - 915.6111 + 2 \cdot 9.54 \cdot 0.8551 \cdot (1 \cdot 66.41 - 1 \cdot 62.77)) \cdot 1,\!407.208$ =

```
<u>101,337.16</u> kg<sub>f</sub>
=
```

 $W_{1-1} =$ $(A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $(388.9024 + 0 + 413.8701 + 0) \cdot 1,407.208$ =
- 11,296.68 kgf =

 $W_{2-2} =$ $(A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- = $(388.9024 + 0 + 413.8701 + 0 + 2 \cdot 9.54 \cdot 66.41 \cdot 0.8551) \cdot 1,\!407.208$
- 26,540.68 kgf =

Load for path 1-1 lesser of W or $W_{1-1} = 11,296.68 \text{ kg}_f$ Path 1-1 through (1) & (3) = 55,634.24 + 33,252.46 = <u>88,886.71</u> kg_f Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 26,540.68 \text{ kg}_f$ Path 2-2 through (1), (4) = 55,634.24 + 55,438.5 = <u>111.072.75 kg_f</u> Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Reinforcement Calculations for MAP

Available reinforcement per UG-39 governs the MAP of this nozzle.

UG-39 Area Calculation Summary (cm ²)						UG-45 Sun	nmary (mm)	
For P = 0 bar @ 21.11 °C The opening is NOT adequately reinforced					The nozzle p	basses UG-45		
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req} t _{min}	
<u>79.7224</u>	22.3845	<u>12.9542</u>	<u>5.2916</u>			<u>4.1387</u>	<u>8.11</u>	9.73

UG-41 Weld Failure Path Analysis Summary (kg _f)								
All failure p	All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength				
<u>95,358</u>	<u>13,270</u>	<u>94,188</u>	<u>31,477</u>	<u>118,163</u>				

Calculations for internal pressure 0 bar @ 21.11 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $\max \left[250.8, \ 125.4 + (11.13 0) + (68 0) \right]$ =
- = 250.8 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- min $[2.5 \cdot (68 0), 2.5 \cdot (11.13 0) + 0]$ =
- = 27.81 mm

Nozzle required thickness per UG-27(c)(1)

 $\cdot R_n$

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

$$= \frac{0.125.4}{1,180.1-0.6.0}$$

0 mm =

Required thickness t_r from UG-34

The static head of liquid has not been included in the total design load because the vessel is supported below the flange.

$$W = 0.785 \cdot G^2 \cdot P + 2 \cdot b \cdot 3.14 \cdot G \cdot m \cdot P$$

= 0.785 \cdot 1,157.5 \cdot 2 \cdot \frac{0}{100} + 2 \cdot 1.25 \cdot 3.14 \cdot 1,157.5 \cdot 3 \cdot \frac{0}{1000} / 100
= 0 \kg_f

$$t_{r} = d \cdot \sqrt{\frac{C \cdot P}{S \cdot E} + \frac{1.9 \cdot W \cdot h_{g}}{S \cdot E \cdot d^{3}}}$$

= 1,157.5 \cdot \sqrt{\frac{0.3 \cdot 0}{1,407.208 \cdot 1} + \frac{1.9 \cdot 0 \cdot 103.88}{100} \cdot 1 \cdot 1,157.5 \cdot 3}
= 0.0094 mm

Gasket seating

$$t_{\rm r} = d \cdot \sqrt{\frac{1.9 \cdot W \cdot h_G}{S \cdot E \cdot d^3}}$$

= 1,157.5 \cdot \sqrt{\frac{1.9 \cdot 325,153.55 \cdot 103.88}{\frac{1.407.208}{100} \cdot 1 \cdot 1,157.5^{-3}}{\frac{3}{100}}}
= 62.77 \text{ mm}

Area required per UG-39

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r2}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$\mathsf{A} = 0.5 \cdot d \cdot t_r + t_r \cdot t_n \cdot (1 - f_{r1})$$

 $= (0.5 \cdot 250.8 \cdot 62.77 + 62.77 \cdot 11.13 \cdot (1 - 0.8551))/100$

= <u>79.7224</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>12.9542</u> cm²

$$= \quad \quad d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- = $(250.8 \cdot (1 \cdot 68 1 \cdot 62.77) 2 \cdot 11.13 \cdot (1 \cdot 68 1 \cdot 62.77) \cdot (1 0.8551))/100$
- = 12.9542 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

$$= (2 \cdot (68 + 11.13) \cdot (1 \cdot 68 - 1 \cdot 62.77) - 2 \cdot 11.13 \cdot (1 \cdot 68 - 1 \cdot 62.77) \cdot (1 - 0.8551)) / 100$$

= 8.1116 cm²

 A_2 = smaller of the following= <u>5.2916</u> cm²

$$= 2 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot L_{pr}$$

- $= (2 \cdot (11.13 0) \cdot 0.8551 \cdot 152.4) / 100$
- = 28.9961 cm²

- $5\cdot (t_n-t_{rn})\cdot f_{r2}\cdot t_n$ =
- $(5 \cdot (11.13 0) \cdot 0.8551 \cdot 11.13) / 100$ =
- = 5.2916 cm²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = $(22^2 \cdot 0.8551)/100$
- = <u>4.1387</u> cm²

 $Area = A_1 + A_2 + A_{41}$

- = 12.9542+5.2916+4.1387
- = <u>22.3845</u> cm²
- ** As Area < A the reinforcement is NOT adequate. **

UG-45 Nozzle Neck Thickness Check

UG-45 No	zzle N	eck Thickness Check
$t_{a{ m UG-}27}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{0\cdot 125.4}{1,180\cdot 1 - 0.6\cdot 0} + 0$
	=	0 mm
t_a	=	$\max \left[t_{a\mathrm{UG-27}}, \ t_{a\mathrm{UG-22}} \right]$
	=	max [0, 0]
	=	0 mm
t_{b1}	=	62.77 mm
t_{b1}	=	$\max \left[t_{b1}, \ t_{b\mathrm{UG16}} \right]$
	=	$\max[62.77, 1.5]$
	=	62.77 mm
t_b	=	$\min \left[t_{b3}, \ t_{b1} ight]$
	=	min $[8.11, 62.77]$
	=	8.11 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[0, 8.11]$
	=	<u>8.11</u> mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 11.13 = 9.73 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Nozzle wall in shear:	0.7.1,203.265 =	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 ka _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 273.05 \cdot 22 \cdot 589.6 = 55,634.24 \text{ kg}_{\text{f}}$

(3) Nozzle wall in shear

 $\frac{\pi}{2}\cdot$ Mean nozzle dia
 $\cdot\,t_n\cdot S_n=\frac{\pi}{2}\cdot 261.92\cdot 11.13\cdot 842.286$ = 38,553.49 kg
f

(4) Groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 273.05 \cdot 14 \cdot 1,041.334 = 62,528.83 \text{ kg}_f$

Loading on welds per UG-41(b)(1)

$$\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$$

- $= (7,972.2434 1,295.4168 + 2 \cdot 11.13 \cdot 0.8551 \cdot (1 \cdot 68 1 \cdot 62.77)) \cdot 1,407.208$
- = <u>95,357.77</u> kg_f

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $= (529.1602 + 0 + 413.8701 + 0) \cdot 1,407.208$
- = <u>13,270.4</u> kg_f

 $\mathsf{W}_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (529.1602 + 0 + 413.8701 + 0 + 2 \cdot 11.13 \cdot 68 \cdot 0.8551) \cdot 1,407.208$
- = <u>31,476.72</u> kg_f

Load for path 1-1 lesser of W or $W_{1-1} = 13,270.4 \text{ kg}_{f}$ Path 1-1 through (1) & (3) = 55,634.24 + 38,553.49 = <u>94,187.74</u> kg_{f} Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 31,476.72 \text{ kg}_{f}$ Path 2-2 through (1), (4) = 55,634.24 + 62,528.83 = <u>118,163.07</u> kg_{f} Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Reinforcement Calculations for External Pressure

UG-39 Area Calculation Summary (cm ²)						UG-45 Su	mmary (mm)	
Th	For F e opening i	Pe = 0.8 ba s NOT ad	ar @ 40 °C equately r) reinf	orce	ed	The nozzle	passes UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
80.5745	<u>16.9322</u>	<u>9.1561</u>	<u>3.6374</u>			<u>4.1387</u>	<u>9.7</u>	9.73

UG-41 Weld Failure Path Analysis Summary (kgf) All failure paths are stronger than the applicable weld loads Weld load Weld load Weld load Path 1-1 Path 2-2 w W₁₋₁ strength W₂₋₂ strength 101,337 10,943 <u>88,887</u> 26,187 <u>111,073</u>

UW-16 Weld Sizing Summary								
Weld description	Required weld size (mm)	Actual weld size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	15.4	weld size is adequate					
Combined weld check $(t_1 + t_2)$	<u>11.92</u>	27.81	weld size is adequate					
Nozzle to shell groove (Lower)	<u>6</u>	12.41	weld size is adequate					

Calculations for external pressure 0.8 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[253.97, \ 126.99 + (11.13 1.59) + (68 1.59) \right]$
- = 253.97 mm

Outer Normal Limit of reinforcement per UG-40

- L_{H} = min [2.5 · (t C), 2.5 · (t_n C_n) + t_e]
 - $= \min \left[2.5 \cdot (68 1.59), \ 2.5 \cdot (11.13 1.59) + 0 \right]$
 - = 23.84 mm

Nozzle required thickness per UG-28 t_{rn} = 0.62 mm

From UG-34 required thickness t_r = 62.77 mm

Area required per UG-39

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551
 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

- $\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 f_{r1}))$
 - $= (0.5 \cdot (253.97 \cdot 62.77 \cdot 1 + 2 \cdot 9.54 \cdot 62.77 \cdot 1 \cdot (1 0.8551)))/100$
 - $= 80.5745 \text{ cm}^2$

Area available from FIG. UG-37.1

 A_1 = larger of the following = <u>9.1561</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (253.97 \cdot (1 \cdot 66.41 1 \cdot 62.77) 2 \cdot 9.54 \cdot (1 \cdot 66.41 1 \cdot 62.77) \cdot (1 0.8551)) / 100$
- = 9.1561 cm²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r_1})$
- $= (2 \cdot (66.41 + 9.54) \cdot (1 \cdot 66.41 1 \cdot 62.77) 2 \cdot 9.54 \cdot (1 \cdot 66.41 1 \cdot 62.77) \cdot (1 0.8551))/100$
- = 5.4355 cm²

 A_2 = smaller of the following= <u>3.6374</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (9.54 0.62) \cdot 0.8551 \cdot 152.4) / 100$
- = 23.2477 cm²
- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= (5 \cdot (9.54 0.62) \cdot 0.8551 \cdot 9.54) / 100$
- = 3.6374 cm²
- $A_{41} = Leg^2 \cdot f_{r2}$
 - = $(22^2 \cdot 0.8551)/100$
 - = <u>4.1387</u> cm²

 $Area = A_1 + A_2 + A_{41}$

- $= \qquad 9.1561 {+} 3.6374 {+} 4.1387$
- = <u>16.9322</u> cm²

** As Area < A the reinforcement is NOT adequate. **

UW-16(d) Weld Check

 $t_1 + t_2 = 27.81 \ge 1.25 \cdot t_{\min} = 11.92$

The combined weld sizes for $t_1 \mbox{ and } t_2 \mbox{ are satisfactory}.$

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	2.21 mm				
t_a	=	$\max \; [t_{a{ m UG-28}} , \; t_{a{ m UG-22}}]$				
	=	$\max [2.21, 0]$				
	=	2.21 mm				
t_{b2}	=	64.36 mm				
t_{b2}	=	$\max \; [t_{b2}, \; \; t_{b \mathrm{UG16}}]$				
	=	\max [64.36, 3.09]				
	=	64.36 mm				
t_b	=	$\min \left[t_{i3}, \ t_{i2} \right]$				
	=	min $[9.7, 64.36]$				
	=	9.7 mm				
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$				
	=	\max [2.21, 9.7]				
	=	<u>9.7</u> mm				
Available n	Available nozzle wall thickness new, $t_n = 0.875 \cdot 11.13 = 9.73$ mm					
The nozzle	neck	thickness is adequate.				

Allowable stresses in joints UG-45 and UW-15(c)

Groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Nozzle wall in shear:	0.7.1,203.265 =	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 273.05 \cdot 22 \cdot 589.6 = 55,634.24 \text{ kg}_{f}$

(3) Nozzle wall in shear $\frac{\pi}{2} \cdot \text{Mean nozzle dia} \cdot t_n \cdot S_n = \frac{\pi}{2} \cdot 263.51 \cdot 9.54 \cdot 842.286 = 33,252.46 \text{ kg}_{\text{f}}$

(4) Groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 273.05 \cdot 12.41 \cdot 1,041.334 = 55,438.5 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

 $\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r_1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$

- $= (8,057.4488 915.6111 + 2 \cdot 9.54 \cdot 0.8551 \cdot (1 \cdot 66.41 1 \cdot 62.77)) \cdot 1,407.208$
- = <u>101,337.16</u> kg_f

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $= (363.7412 + 0 + 413.8701 + 0) \cdot 1,407.208$
- = <u>10,942.61</u> kg_f
- $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$
 - $= (363.7412 + 0 + 413.8701 + 0 + 2 \cdot 9.54 \cdot 66.41 \cdot 0.8551) \cdot 1,407.208$
 - = <u>26,186.61</u> kg_f

Load for path 1-1 lesser of W or $W_{1-1} = 10,942.61 \text{ kg}_f$ Path 1-1 through (1) & (3) = 55,634.24 + 33,252.46 = <u>88,886.71</u> kg_f Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 26,186.61 \text{ kg}_f$ Path 2-2 through (1), (4) = 55,634.24 + 55,438.5 = <u>111,072.75</u> kg_f Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

External Pressure, (Corroded & at 40 °C) UG-28(c)

 $\frac{L}{D_o} = \frac{152.4}{273.05} = 0.5581$ $\frac{D_o}{t} = \frac{273.05}{0.62} = 441.8706$

From table G: A = 0.000266

From table CS-2 Metric: B = 270.3425 kg/cm $^2(265.11$ bar)

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 265.11}{3 \cdot (273.05/0.62)} = 0.8 \ \ {
m bar}$$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 0.62 + 1.59 = 2.21 \text{ mm}$

Cylinder #1

ASME Section VIII Division 1, 2021 Edition Metric					
Com	ponent	Cylinder			
Ма	terial	SA-	36 (II-D Metric p. 12	, In. 19)	
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP	
No	No	No	No	No	
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)	
Int	ernal	7	40	5	
Ext	ternal	0.8	40	5	
		Static Liquid	Head		
Cor	ndition	P _s (bar)	H _s (mm)	SG	
Оре	erating	0.31	3,218.2	0.98	
Test horizontal		0.44 4,500 1			
Dimensions					
Inner Diameter			4,500 mm		
Le	ength		2,438.4 mm		
Nominal	Thickness	18 mm			
Corrosion	Inner	1.6 mm			
Contrasion	Outer		1.64 mm		
		Weight and Ca	pacity		
		Weig	ght (kg)	Capacity (liters)	
Ν	lew	4,831.5		38,781.08	
Corroded		3,961.52 38,836.26			
		Radiograp	hy		
Longitu	dinal seam		Full UW-11(a) Type	e 1	
Top Circum	ferential seam	Full UW-11(a) Type 2			
Bottom Circu	mferential seam		Full UW-11(a) Type	∋2	

Results Summary				
Governing condition	Internal pressure			
Minimum thickness per UG-16	1.5 mm + 3.24 mm = 4.74 mm			
Design thickness due to internal pressure (t)	<u>17.73 mm</u>			
Design thickness due to external pressure (t _e)	<u>15.81 mm</u>			
Design thickness due to combined loadings + corrosion	<u>11.01 mm</u>			
Maximum allowable working pressure (MAWP)	<u>7.13 bar</u>			
Maximum allowable pressure (MAP)	<u>9.08 bar</u>			
Maximum allowable external pressure (MAEP)	<u>1.16 bar</u>			
Rated MDMT	-105 °C			

UCS-66 Material Toughness Requirements				
$t_r = rac{0.31\cdot 2,251.6}{1,140\cdot 1 - 0.6\cdot 0.31} =$	0.61 mm			
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.61 \cdot 1}{18 - 3.24} =$	0.0414			
$egin{array}{llllllllllllllllllllllllllllllllllll$	0.0058			
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C			
Material is exempt from impact testing at the Design MDMT of 5°C.				

Design thickness, (at 40 °C) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{7.31 \cdot 2,251.6}{1,140 \cdot 1.00 - 0.60 \cdot 7.31} + 3.24 = \underline{17.73} \text{ mm}$$

Maximum allowable working pressure, (at 40 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{1,\!140 \cdot 1.00 \cdot 14.76}{2,\!251.6 + 0.60 \cdot 14.76} - 0.31 = \underline{7.13} \text{ bar}$

Maximum allowable pressure, (at 21.11 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{1,\!140 \cdot 1.00 \cdot 18}{2,\!250 \!+\!0.60 \cdot 18} = \underline{9.08} \text{ bar}$

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,196.39}{4,536} = 0.9251$$

$$\frac{D_o}{t} = \frac{4,536}{12.57} = 360.7504$$

From table G: A = 0.000217

From table CS-2 Metric: $B = 220.7183 \text{ kg/cm}^2 (216.45 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 216.45}{3 \cdot (4,536/12.57)} = 0.8 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 12.57 + 3.24 = 15.81 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,196.39}{4,536} = 0.9251$$

 $\frac{D_o}{t} = \frac{4,536}{14.76} = 307.3387$

From table G: A = 0.000268

From table CS-2 Metric: $B = 273.324 \text{ kg/cm}^2 (268.0388 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 268.04}{3 \cdot (4,536/14.76)} = \underline{1.16} \text{ bar}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 18}{2,259}\right) \cdot \left(1 - \frac{2,259}{\infty}\right) = 0.3984\%$$

The extreme fiber elongation does not exceed 5%.

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

$$\begin{split} P_v &= \frac{W}{2 \cdot \pi \cdot R_m} + \frac{M}{\pi \cdot R_m^2} = \frac{10 \cdot 10,548.1}{2 \cdot \pi \cdot 2,258.98} + 10000 \cdot 2,506.6 \frac{1}{\pi \cdot 2,258.98^{-2}} = 8.9951 \text{ kg/cm} \\ \alpha &= \frac{P_v}{P_e \cdot D_o} = 9.803 \cdot \frac{8.9951}{0.8 \cdot 4,536} = 0.0243 \\ n &= 7 \\ m &= \frac{1.23}{\left(\frac{L}{D_o}\right)^2} = \frac{1.23}{\left(\frac{4,196.39}{4,536}\right)^2} = 1.4371 \\ Ratio P_e &= \frac{n^2 - 1 + m + m \cdot \alpha}{n^2 - 1 + m} = \frac{7^2 - 1 + 1.4371 + 1.4371 \cdot 0.0243}{7^2 - 1 + 1.4371} = 1.0007 \end{split}$$

 $Ratio P_e \cdot P_e \leq MAEP$

 $(1.0007 \cdot 0.8 = 0.8) \le 1.16$

Cylinder design thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

$$P_{v} = \frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m}} + \frac{M}{\pi \cdot R_{m}^{2}} = \frac{1.08 \cdot 10 \cdot 10,548.1}{2 \cdot \pi \cdot 2,258.98} + 10000 \cdot 22,131.4 \frac{\pi \cdot 2,258.98^{-2}}{\pi \cdot 2,258.98^{-2}} = 21.8607 \text{ kg/cm}$$

$$\alpha = \frac{P_{v}}{P_{e} \cdot D_{o}} = 9.803 \cdot \frac{21.8607}{0.8 \cdot 4,536} = 0.0591$$

$$n = 7$$

$$m = \frac{1.23}{\left(\frac{L}{D_{o}}\right)^{2}} = \frac{1.23}{\left(\frac{4,196.39}{4,536}\right)^{2}} = 1.4371$$

$$Ratio P_{e} = \frac{n^{2} - 1 + m + m \cdot \alpha}{n^{2} - 1 + m} = \frac{7^{2} - 1 + 1.4371 + 1.4371 \cdot 0.0591}{7^{2} - 1 + 1.4371} = 1.0017$$

 $Ratio P_e \cdot P_e \leq MAEP$

 $(1.0017 \cdot 0.8 = 0.8) \leq 1.16$

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads								
Condition	Pressure R (bar)	Allowable Stress Before UG-23 Stress Increase (kg/cm ²)		Temperature	Corrosion	Load	Req'd Thk Due	Req'd Thk Due to
	P (Dar)	s _t	S _c	(C)	C (IIIII)			compression (mm)
Operating Hot & Corroded	7	1 162 5	805.5	40	3 24	Wind	<u>7.64</u>	<u>7.58</u>
	, i	1,102.0	000.0		0.21	Seismic	<u>7.77</u>	<u>7.46</u>
Operating Hot & New	7	1 162 5	862	40	0	Wind	<u>7.63</u>	<u>7.57</u>
	,	1,102.0	<u>002</u>		0	Seismic	<u>7.76</u>	<u>7.44</u>
Hot Shut Down, Corroded	0	1,162.5	<u>805.5</u>	40	3.24	Wind	<u>0.04</u>	<u>0.11</u>
						Seismic	<u>0.1</u>	<u>0.27</u>
Hot Shut Down, New	0	1,162.5	<u>862</u>	40	0	Wind	<u>0.04</u>	<u>0.12</u>
	Ū					Seismic	<u>0.09</u>	<u>0.27</u>
Empty Corroded	0	1,162.5	<u>805.5</u>	21.11	3.24	Wind	<u>0.04</u>	<u>0.11</u>
	Ū					Seismic	<u>0</u>	<u>0.15</u>
Empty Now	0	1 162 5	962	21.11	0	Wind	<u>0.04</u>	<u>0.12</u>
	0	1,102.5	002	21.11		Seismic	<u>0</u>	<u>0.16</u>
Vacuum	-0.8	1,162.5	<u>805.5</u>	10	2.24	Wind	<u>1.18</u>	<u>1.25</u>
				+0	5.24	Seismic	<u>1.02</u>	<u>1.41</u>
Hot Shut Down, Corroded, Weight & Eccentric Moments Only	0	1,162.5	<u>805.5</u>	40	3.24	Weight	<u>0.08</u>	<u>0.1</u>

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC},$ (table CS-2 Metric)

$$A = {0.125 \over R_o/t} = {0.125 \over 2,268/14.76} = 0.000813$$

 $B=805.5~{
m kg/cm}^2$

$$S = rac{1,162.5}{1.00} = 1,162.5 \, {
m kg/cm}^2$$

 $S_{cHC} = \min(B,S) = \frac{805.5 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Hot and New- S_{cHN}, (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,268/18} = 0.000992$$
$$B = 862 \text{ kg/cm}^2$$
$$1.162.5$$

$$S = \frac{1,162.5}{1.00} = 1,162.5$$
 kg/cm²

 $S_{cHN} = \min(B,S) = \frac{862 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Cold and New- S_{cCN} , (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,268/18} = 0.000992$$

 $B=862\,$ kg/cm 2

$$S = {1,162.5 \over 1.00} = 1,162.5 ~~{
m kg/cm}^2$$

 $S_{cCN} = \min(B,S) = 862 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and Corroded- $S_{cCC},$ (table CS-2 Metric)

$$A = rac{0.125}{R_o/t} = rac{0.125}{2,268/14.76} = 0.000813$$

$$B = 805.5$$
 kg/cm²

$$S = \frac{1{,}162.5}{1.00} = 1{,}162.5 \; {\rm ~kg/cm}^2$$

 $S_{c\mathbb{C}} = \min(B,S) = 805.5 \text{ kg/cm}^2$

Allowable Compressive Stress, Vacuum and Corroded- $S_{cVC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,\!268/14.76} = 0.000813$$

 $B\,=805.5\,$ kg/cm 2

$$S = \frac{1{,}162.5}{1.00} = 1{,}162.5 \; \text{ kg/cm}^2$$

 $S_{cVC} = \min(B,S) = \frac{805.5 \text{ kg/cm}^2}{2}$

Operating, Hot & Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.251.6}{2 \cdot 1.140 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 7.67 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 2.506.6 \frac{1}{\pi \cdot 2.258.98^{-2} \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.01 \text{ mm} \\ t_{w} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot 10.548.1}{2 \cdot \pi \cdot 2.258.98 \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 7.67 + 0.01 - (0.04) \\ &= 7.67 + 0.01 - (0.04) \\ &= 7.64 \text{ mm} \\ t_{wc} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{10.548.1}{2 \cdot \pi \cdot 2.258.98 \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.07 \text{ mm} \\ t_{c} &= |t_{me} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.01 + (0.07) - (7.67)| \\ &= 7.58 \text{ mm} \\ \end{bmatrix}$$

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,140 \cdot 1.00 \cdot 0.90 \cdot (14.76 - 0.01 + (0.04))}{2,251.6 - 0.40 \cdot (14.76 - 0.01 + (0.04))}$$
$$= \underline{13.51} \text{ bar}$$

Operating, Hot & New, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1.140 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 7.66 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{h}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 2.512.7 \frac{M}{\pi \cdot 2.259^{2} \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.01 \text{ mm} \\ t_{w} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot 12.091.1}{2 \cdot \pi \cdot 2.259^{2} \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 7.66 + 0.01 - (0.05) \\ &= 7.63 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{12.091.1}{2 \cdot \pi \cdot 2.259 \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.01 + (0.08) - (7.66)| \\ &= 7.57 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,140 \cdot 1.00 \cdot 0.90 \cdot (18 - 0.01 + (0.05))}{2,250 - 0.40 \cdot (18 - 0.01 + (0.05))}$$
$$= 16.5 \text{ bar}$$

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{array}{ll} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 2,506.6 \frac{1}{\pi \cdot 2,258.98^{-2} \cdot 789.9 \cdot 1.00} \cdot .98066.5 \\ &= 0.02 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 10,548.1 \frac{1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.9 \cdot 1.00} \cdot .98.0665 \\ &= 0.06 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.02 - (0.06)| \\ &= 0.04 \text{ mm} \\ t_{w} \ c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{10,548.1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.9 \cdot 1.00} \cdot .98.0665 \\ &= 0.09 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.02 + (0.09) - (0) \\ &= 0.11 \text{ mm} \end{array}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 2,512.7 \frac{M}{\pi \cdot 2,259^{-2} \cdot 845.38 \cdot 1.00} \cdot 98066.5 \\ &= 0.02 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 12,091.1 \frac{1}{2 \cdot \pi \cdot 2,259 \cdot 845.38 \cdot 1.00} \cdot 98.0665 \\ &= 0.06 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.02 - (0.06)| \\ &= 0.04 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{12,091.1}{2 \cdot \pi \cdot 2,259 \cdot 845.38 \cdot 1.00} \cdot 98.0665 \\ &= 0.1 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.02 + (0.1) - (0) \\ &= 0.12 \text{ mm} \\ \\ \text{Empty, Corroded, Wind, Bottom Seam} \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 2,506.6 \frac{1}{\pi \cdot 2,258.98^{-2} \cdot 789.9 \cdot 1.00} \cdot 98066.5 \\ &= 0.02 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 10,548.1 \frac{1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.06 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.02 - (0.06)| \\ &= 0.04 \text{ mm} \\ t_{w} c &= \frac{10,548.1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.09 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{Weight}) \\ &= 0.02 + (0.09) - (0) \\ &= 0.011 \text{ mm} \\ \\ \text{Empty, New, Wind, Bottom Seam} \end{split}$$

$$\begin{split} t_p &= \frac{P \cdot R}{2 \cdot S_c \cdot K_s + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 789.9 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.14 \text{ mm} \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 2,506.6 \frac{1}{\pi \cdot 2.258.98} \cdot \frac{2}{789.9 \cdot 1.00} \cdot 98066.5 \\ &= 0.02 \text{ mm} \\ t_w &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor} \qquad (Weight) \\ &= 0.60 \cdot 10,548.1 \frac{1}{2 \cdot \pi \cdot 2.258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.06 \text{ mm} \\ t_t &= |t_p + t_m - t_w| \qquad (total, net compressive) \\ &= | -1.14 + 0.02 - (0.06)| \\ &= 1.18 \text{ mm} \\ t_w c &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{10,548.1}{2 \cdot \pi \cdot 2.258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.09 \text{ mm} \\ t_c &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0.02 + (0.09) - (-1.14) \\ &= 1.25 \text{ mm} \end{split}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 789.9 \cdot 1.00 \cdot (14.76 - 0.02 - 0.09)}{2,251.6 - 0.40 \cdot (14.76 - 0.02 - 0.09)}$$
$$= 10.3 \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 1,568.6 \frac{1}{\pi \cdot 2,258.98^{-2} \cdot 789.9 \cdot 1.00} \cdot 98066.5 \\ &= 0.01 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 10,548.1 \frac{1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.09 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.01 - (0.09)| \\ &= 0.08 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.01 + (0.09) - (0) \\ &= 0.1 \text{ mm} \end{split}$$

Operating, Hot & Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.251.6}{2 \cdot 1.140 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 7.67 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 22,131.4 \frac{\pi \cdot 2.258.98^{-2} \cdot 1.140 \cdot 1.00 \cdot 0.90}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.65 - 0.13 \text{ mm}}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.52 \cdot 10,548.1}{2 \cdot \pi \cdot 2.258.98 \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 7.67 + 0.13 - (0.04) \\ &= \frac{7.77 \text{ mm}}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{1.08 \cdot 10,548.1}{2 \cdot \pi \cdot 2.258.98 \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0.13 + (0.08) - (7.67)| \\ &= 7.46 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,140 \cdot 1.00 \cdot 0.90 \cdot (14.76 - 0.13 + (0.04))}{2,251.6 - 0.40 \cdot (14.76 - 0.13 + (0.04))}$$
$$= 13.4 \text{ bar}$$

Operating, Hot & New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1.140 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 7.66 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 22,794.5 \frac{M}{\pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 22,794.5 \frac{M}{\pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= 0.14 \text{ mm} \\ t_{w} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.52 \cdot 12,091.1}{2 \cdot \pi \cdot 2.259 \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 7.66 + 0.14 - (0.04) \\ &= 7.76 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{1.08 \cdot 12,091.1}{2 \cdot \pi \cdot 2.259 \cdot 1.140 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.09 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0.14 + (0.09) - (7.66)| \\ &= 7.44 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,140 \cdot 1.00 \cdot 0.90 \cdot (18 - 0.14 + (0.04))}{2,250 - 0.40 \cdot (18 - 0.14 + (0.04))}$$
$$= 16.38 \text{ bar}$$

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$22,131.4 \underbrace{\qquad}_{\pi \cdot 2,258.98 \ ^2 \cdot 1,140 \cdot 1.00 \cdot 0.90} \cdot ($	98066.5
	=	0.13 mm	
tw	=	$\frac{\left(0.6-0.14\cdot S_{DS}\right)\cdot W}{2\cdot \pi\cdot R_m\cdot S_t\cdot K_s\cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52 \cdot 10,548.1}{2 \cdot \pi \cdot 2,258.98 \cdot 1,140 \cdot 1.00 \cdot 0.90} \cdot 98.0668$	5
	=	0.04 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0 + 0.13 - (0.04)	
	=	<u>0.1 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$22,131.4 \underbrace{\qquad}_{\pi + 2,258.98 - 2 + 789.9 + 1.00} + 98066.5$	
	=	0.17 mm	
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08\cdot 10,548.1}{2\cdot \pi\cdot 2,258.98\cdot 789.9\cdot 1.00}\cdot 98.0665$	
	=	0.1 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.17+(0.1)-(0)	
	=	<u>0.27 mm</u>	
Hot :	Sh	ut Down, New, Seismic, Bottom Seam	

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$22,794.5 \underbrace{\qquad}_{\pi\ \cdot\ 2,259\ ^2\ \cdot\ 1,140\ \cdot\ 1.00\ \cdot\ 0.90} \cdot 98066.5$	
	=	0.14 mm	
tw	=	$\frac{\left(0.6-0.14\cdot S_{DS}\right)\cdot W}{2\cdot\pi\cdot R_{m}\cdot S_{t}\cdot K_{s}\cdot E_{c}}\cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 12,091.1}{2\cdot \pi\cdot 2,259\cdot 1,140\cdot 1.00\cdot 0.90}\cdot 98.0665$	
	=	0.04 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.14-(0.04)	
	=	<u>0.09 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$22,794.5 \underbrace{\qquad}_{\pi \cdot 2,259\ ^2 \cdot 845.38 \cdot 1.00} \cdot 98066.5$	
	=	0.16 mm	
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08 \cdot 12,091.1}{2 \cdot \pi \cdot 2,259 \cdot 845.38 \cdot 1.00} \cdot 98.0665$	
	=	0.11 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.16+(0.11)-(0)	
	=	<u>0.27 mm</u>	ナ
<u>Emp</u>	<u>ty,</u>	Corroded, Seismic, Bottom Seam	

$$\begin{split} t_{\text{p}} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{\text{m}} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 6,488.7 \frac{M}{\pi \cdot 2,258.98^{-2} \cdot 1,140 \cdot 1.00 \cdot 0.90} \cdot 98006.5 \\ &= 0.04 \text{ mm} \\ t_{\text{W}} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.52 \cdot 10,548.1}{2 \cdot \pi \cdot 2,258.98 \cdot 1,140 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} & (\text{total required, tensile}) \\ &= 0 + 0.04 - (0.04) \\ &= 0 \text{ mm} \\ t_{\text{mc}} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 6,488.7 \frac{M}{\pi \cdot 2,258.98^{-2} \cdot 789.9 \cdot 1.00} \cdot 98066.5 \\ &= 0.05 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 10,548.1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.9 \cdot 1.00} \cdot 980665 \\ &= 0.1 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.05 + (0.1) - (0) \\ &= 0.15 \text{ mm} \\ \text{Empty, New, Seismic, Bottom Seam} \end{split}$$

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$7,178.6 \\ {\pi \cdot 2,\!259\ ^2 \cdot 1,\!140 \cdot 1.00 \cdot 0.90} \cdot 98066.5$	
	=	0.04 mm	
tw	=	$\frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 12,091.1}{2\cdot \pi\cdot 2,259\cdot 1,140\cdot 1.00\cdot 0.90}\cdot 98.0665$	
	=	0.04 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0 + 0.04 - (0.04)	
	=	<u>0 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$7,178.6 {{\pi \cdot 2,259^{-2} \cdot 845.38 \cdot 1.00}} \cdot 98066.5$	
	=	0.05 mm	
t _{w c}	=	$\frac{\left(1+0.14 \cdot S_{DS}\right) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08 \cdot 12,091.1}{2 \cdot \pi \cdot 2,259 \cdot 845.38 \cdot 1.00} \cdot 98.0665$	
	=	0.11 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.05+(0.11)-(0)	
	=	<u>0.16 mm</u>	と
<u>Vacı</u>	<u>ur</u>	n, Seismic, Bottom Seam	
<u>Vacı</u>	= <u>1ur</u>	0.16 mm n, Seismic, Bottom Seam	

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 789.9 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.14 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 22,131.4 \frac{\pi}{\pi \cdot 2.258.98^{-2} \cdot 789.9 \cdot 1.00} \cdot 98066.5 \\ &= 0.17 \text{ mm} \\ t_{w} &= (0.6 - 0.14 \cdot S_{DS}) \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \quad (\text{Weight}) \\ &= 0.52 \cdot 10.548.1 \frac{1}{2 \cdot \pi \cdot 2.258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (total, net compressive) \\ &= |-1.14 + 0.17 - (0.05)| \\ &= 1.02 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{1.08 \cdot 10.548.1}{2 \cdot \pi \cdot 2.258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.1 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0.17 + (0.1) - (-1.14) \\ &= 1.41 \text{ mm} \end{split}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 789.9 \cdot 1.00 \cdot (14.76 - 0.17 - 0.1)}{2,251.6 - 0.40 \cdot (14.76 - 0.17 - 0.1)}$$

= <u>10.19</u> bar

Nozzle #6 (N6)

ASME Section VIII Division 1, 2021 Edition Metric			
Note: round inside edges per UG-76(c)			
Location and Orie	entation		
Located on	Cylinder #1		
Orientation	225°		
Nozzle center line offset to datum line	6,070.3 mm		
End of hozzle to shell center	2,423 IIIII		
Passes through a Category A joint			
Description	NPS 26 Sch 20 (XS) DN 650		
Access opening	No		
Material specification	SA-106 B Smls Pipe (II-D Metric p. 16, In. 16)		
Inside diameter, new	635 mm		
Pipe nominal wall thickness	12.7 mm		
Pipe minimum wall thickness ¹	11.11 mm		
Corrosion allowance	1.59 mm		
Projection available outside vessel, Lpr	34.35 mm		
Internal projection, h _{new}	14 mm		
Projection available outside vessel to flange face, Lf	155 mm		
Local vessel minimum thickness	18 mm		
Liquid static head included	0.28 bar		
Reinforcing F	Pad		
Material specification	SA-516 70 (II-D Metric p. 20, In. 45)		
Diameter, D _p	1,020.4 mm		
Thickness, t _e	18 mm		
Is split	No		
Welds	·		
Inner fillet, Leg ₄₁	12.7 mm		
Outer fillet, Leg ₄₂	13 mm		
Lower fillet, Leg ₄₃	14 mm		
Pad groove weld	18 mm		
Radiograph	V		
Longitudinal seam Seamless No RT			
Circumferential seam	Full UW-11(a) Type 1		

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.47-2017 Flange			
Description	NPS 26 Class 150 WN A105 Series A		
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 410, In. 32)		
Blind included	Yes		
Rated MDMT	-48°C		
Liquid static head	0.25 bar		
MAWP rating	19.53 bar @ 40°C		
MAP rating	19.6 bar @ 21.11°C		
Hydrotest rating	30 bar @ 21.11°C		
PWHT performed	No		
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	No		
Impact Tested	No		
Circumferential joint radiography Full UW-11(a) Type 1			
Bore diameter, B (specified by purchaser) 647.7 mm			
Notes			
Flange and blind rated MDMT per UCS-66(b)(3) = -105°C (Coincident ratio = 0.331) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C			

UCS-66 Material Toughness Requirements No	ozzle
$t_r = rac{6.52\cdot 319.09}{1,\!180\cdot 1 - 0.6\cdot 6.52} =$	1.77 mm
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.77 \cdot 1}{11.11 - 1.59} =$	0.1857
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C
Material is exempt from impact testing at the Design MI	DMT of 5°C.

UCS-66 Material Toughness Requirements Pad					
Governing thickness, t _g =	18 mm				
MDMT =	-29°C				
Material is exempt from impact testing per UG-20(f) at	the Design MDMT of 5°C				

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm ²)						UG-45 Summary (mm)			
For P = 7.28 bar @ 40 °C The opening is NOT adequately reinforced						The nozzle passes UG-45			
	A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
	<u>92.1081</u>	<u>72.6519</u>	<u>2.08</u>	<u>6.2768</u>	<u>2.359</u>	<u>58.3561</u>	<u>3.58</u>	<u>9.92</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
104,740	77,701	192,750	16,694	326,998	<u>85,851</u>	166,506	

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate		
Nozzle to inside shell fillet (Leg ₄₃)	<u>7.78</u>	8.2 (corroded)	weld size is adequate		

Calculations for internal pressure 7.28 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_{n} + (t_{n} C_{n}) + (t C)]$
 - = max [638.18, 319.09 + (12.7 1.59) + (18 3.24)]
 - = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

L_H =

- $= \min \ [2.5 \cdot (t-C), \ 2.5 \cdot (t_n-C_n) + t_e]$
- = min $[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36]$
- = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, \ 2.5 \cdot (t - C), \ 2.5 \cdot (t_i - C_n - C)]$$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{7.2795 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 7.2795}$$

= 1.98 mm
$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{7.2795 \cdot 2,251.6}{1,140 \cdot 1 - 0.6 \cdot 7.2795}$$
$$= 14.43 \text{ mm}$$

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,162.477, S_p = 1,407.208 kg_f/cm²

$$f_{r1} = lesser of 1 \text{ or } \frac{S_n}{S_v} = 1$$

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 1

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r_1})$$

- $= (638.18 \cdot 14.43 \cdot 1 + 2 \cdot 11.11 \cdot 14.43 \cdot 1 \cdot (1-1))/100$
- = <u>92.1081</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following = 2.08 cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 14.43) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 14.43) \cdot (1 1)) / 100$
- = 2.08 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 14.43) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 14.43) \cdot (1 1)) / 100$
- = 0.1684 cm²

 A_2 = smaller of the following= <u>6.2768</u> cm²

$$= 2 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot L_{pr}$$

- $= (2 \cdot (11.11 1.98) \cdot 1 \cdot 34.35) / 100$
- = 6.2768 cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.98) \cdot 1 \cdot 34.35) / 100$
- = 6.2768 cm²

 A_3 = smaller of the following = 2.359 cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 1) / 100$
- $= 7.0196 \text{ cm}^2$
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- = $(5 \cdot 9.51 \cdot 9.51 \cdot 1)/100$
- = <u>4.5242</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 1) / 100$
- = <u>2.359</u> cm²
- $A_{41} = Leg^2 \cdot f_{r3}$
 - = $(10.36^2 \cdot 1)/100$
 - = <u>1.0723</u> cm²
- $A_{42} = Leg^2 \cdot f_{r4}$
 - = $(10.66^2 \cdot 1)/100$
 - = <u>1.1355</u> cm²
- $A_{43} = Leg^2 \cdot f_{r2}$
 - = $(11.71^2 \cdot 1)/100$
 - = <u>1.3723</u> cm²

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$

- $= ((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1)/100$
- = <u>58.3561</u> cm²
- $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$
 - $= \qquad 2.08 + 6.2768 + 2.359 + 1.0723 + 1.1355 + 1.3723 + 58.3561$
 - = <u>72.6519</u> cm²

** As Area < A the reinforcement is NOT adequate. **

UW-16(d) Weld Check

Inner fillet:	$t_{ m min}$	$=$ min [19 mm, t_n , t_e] $=$ 11.11 mm
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ <u>6</u> mm

 $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 10.36 = 7.25 \text{ mm}$

Outer fillet: $t_{\min} = \min [19 \text{ mm}, t_e, t] = 14.76 \text{ mm}$ $t_{w(\min)} = 0.5 \cdot t_{\min} = 7.38 \,\,\, \mathrm{mm}$ $t_{w(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 10.66 = 7.46 \text{ mm}$

Lower fillet: $t_{\min} = \min [19 \text{ mm}, t_n, t] = 11.11 \text{ mm}$ $t_{w(\min)} = 0.7 \cdot t_{\min} = 7.78 \,\,\,\mathrm{mm}$

$$t_{w(actual)} = 0.7 \cdot {
m Leg} = 0.7 \cdot 11.71 = 8.2 ~~{
m mm}$$

UG-45 Nozzle Neck Thickness Check

UG-45 No	zzle N	eck Thickness Check
$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{7.2795 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 7.2795} + 1.59$
	=	3.56 mm
t_a	=	$\max [t_{a{ m UG-27}}, \ t_{a{ m UG-22}}]$
	=	max [3.56, 0]
	=	3.56 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{7.2795 \cdot 2,251.6}{1,140 \cdot 1 - 0.6 \cdot 7.2795} + 3.24$
	=	17.67 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max[17.67, 3.09]$
	=	17.67 mm
t_b	=	$\min \; [t_{b3} , \; t_{b1}]$
	=	\min [9.92, 17.67]
	=	9.92 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[3.56, 9.92]$
	=	<u>9.92</u> mm

Available nozzle wall thickness new, t_n = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	0.7.1,203.265 =	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	$0.49 \cdot 1,162.477 =$	569.614 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,162.477 =	569.614 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear $\frac{\pi}{2}$ · Nozzle OD · Leg · $S_i = \frac{\pi}{2}$ · 660.4 · 10.36 · 589.6 = 63,339.41 kgf

(2) Outer fillet weld in shear

 $\frac{\pi}{2}$ · Pad OD · Leg · $S_o = \frac{\pi}{2}$ · 1,020.4 · 10.66 · 569.614 = 97,288.72 kgf

(3) Nozzle wall in shear

 $\frac{\pi}{2}$ · Mean nozzle dia · $t_n \cdot S_n = \frac{\pi}{2} \cdot 649.29 \cdot 11.11 \cdot 842.286 = 95,461.47 \text{ kg}_{\text{f}}$

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 660.4 \cdot 11.71 \cdot 569.614 = 69,216.95 \text{ kg}_f$

(6) Upper groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 660.4 \cdot 18 \cdot 1,041.334 = 194,441.8 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

 $(A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_v$ W

- $(9,\!210.8066 207.9996 + 2\cdot 11.11\cdot 1\cdot (1\cdot 14.76 1\cdot 14.43))\cdot 1,\!162.477$ =
- <u>104,739.73</u> kg_f =

 $W_{1-1} =$ $(A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- = $(627.6762 + 5,835.6121 + 107.2256 + 113.5482) \cdot 1,162.477$
- 77,700.66 kgf =

 $W_{2-2} =$ $(A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

> $(627.6762 + 235.9012 + 107.2256 + 137.2255 + 2 \cdot 11.11 \cdot 14.76 \cdot 1) \cdot 1,\!162.477$ =

<u>16,693.7</u> kg_f =

 $W_{3-3} =$ $(A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

> = $(627.6762 + 235.9012 + 5,835.6121 + 107.2256 + 113.5482 + 137.2255 + 2 \cdot 11.11 \cdot 14.76 \cdot 1) \cdot 1,162.477$

85,851.3 kgf =

Load for path 1-1 lesser of W or $W_{1-1} = 77,700.66 \text{ kg}_f$ Path 1-1 through (2) & (3) = 97,288.72 + 95,461.47 = <u>192,750.19</u> kg_f Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 16,693.7 \text{ kg}_f$ Path 2-2 through (1), (5), (6) = 63,339.41 + 69,216.95 + 194,441.8 = <u>326,998.16</u> kg_f Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 85,851.3 \text{ kg}_f$ Path 3-3 through (2), (5) = 97,288.72 + 69,216.95 = <u>166,505.68</u> kg_f Path 3-3 is stronger than W_{3-3} so it is acceptable per UG-41(b)(1).

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (cm ²)							UG-45 Su	mmary (mm)
For P = 6.52 bar @ 40 °C The opening is adequately reinforced						The nozzle	passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}	
82.4471	82.4557	<u>11.7406</u>	<u>6.42</u>	<u>2.359</u>	<u>58.3561</u>	<u>3.58</u>	<u>9.92</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)						
All failure paths are stronger than the applicable weld loads						
Weld load Weld load Pa W W ₁₋₁ st		Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength
<u>82,670</u>	<u>77,867</u>	<u>192,750</u>	<u>16,860</u>	326,998	<u>86,018</u>	166,506

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate				
Nozzle to inside shell fillet (Leg ₄₃)	<u>7.78</u>	8.2 (corroded)	weld size is adequate				

.

Calculations for internal pressure 6.52 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[638.18, \ 319.09 + (12.7 1.59) + (18 3.24) \right]$
- = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36 \right]$
- = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$L_{I}$$
 = min $[h, 2.5 \cdot (t - C), 2.5 \cdot (t_{i} - C_{n} - C)]$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{6.5186 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 6.5186}$$

= 1.77 mm

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{6.5186 \cdot 2,251.6}{1,140 \cdot 1 - 0.6 \cdot 6.5186}$$
$$= 12.92 \text{ mm}$$

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,162.477, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 1
 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 1

$$f_{r4}$$
 = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

- $= (638.18 \cdot 12.92 \cdot 1 + 2 \cdot 11.11 \cdot 12.92 \cdot 1 \cdot (1-1))/100$
- = <u>82.4471</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>11.7406</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 12.92) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.92) \cdot (1 1))/100$
- = 11.7406 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1-f_{r1})$$

- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 12.92) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.92) \cdot (1 1))/100$
- = 0.9523 cm²

 A_2 = smaller of the following= <u>6.42</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.77) \cdot 1 \cdot 34.35) / 100$
- = 6.42 cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.77) \cdot 1 \cdot 34.35) / 100$
- = 6.42 cm²

 A_3 = smaller of the following = <u>2.359</u> cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 1)/100$
- = <u>7.0196</u> cm²
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- = $(5 \cdot 9.51 \cdot 9.51 \cdot 1)/100$
- = <u>4.5242</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 1) / 100$
- = <u>2.359</u> cm²
- $A_{41} = Leg^2 \cdot f_{r3}$
 - = $(10.36^{2} \cdot 1)/100$
 - = <u>1.0723</u> cm²
- $A_{42} = Leg^2 \cdot f_{r4}$
 - = $(10.66^2 \cdot 1)/100$
 - = <u>1.1355</u> cm²
- $A_{43} = Leg^2 \cdot f_{r2}$
 - = $(11.71^2 \cdot 1)/100$
 - = <u>1.3723</u> cm²

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$

- $= ((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1)/100$
- = 58.3561 cm²

 $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 11.7406 + 6.42 + 2.359 + 1.0723 + 1.1355 + 1.3723 + 58.3561
- = <u>82.4557</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

 Outer fillet: t_{\min} = min [19 mm, t_e , t] = 14.76 mm

 $t_{w(\min)}$ = $0.5 \cdot t_{\min}$ = 7.38 mm

 $t_{w(actual)}$ = $0.7 \cdot \text{Leg}$ = $0.7 \cdot 10.66$ = 7.46 mm

 Lower fillet: t_{\min} = min [19 mm, t_n , t] = 11.11 mm

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{rcl} t_{aUG-27} & = & \frac{P \cdot R_{a}}{S_{n} \cdot E - 0.6 \cdot P} + \text{Corrosion} \\ & = & \frac{6.5186 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 6.5186} + 1.59 \\ & = & 3.36 \text{ mm} \\ t_{a} & = & \max\left[t_{aUG-27}, \ t_{aUG-22}\right] \\ & = & \max\left[3.36, \ 0\right] \\ & = & 3.36 \text{ mm} \\ t_{b1} & = & \frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion} \\ & = & \frac{6.5186 \cdot 2.251.6}{1,140 \cdot 1 - 0.6 \cdot 6.5186} + 3.24 \\ & = & 16.16 \text{ mm} \\ t_{b1} & = & \max\left[t_{b1}, \ t_{aUG16}\right] \\ & = & \max\left[16.16, \ 3.09\right] \\ & = & 16.16 \text{ mm} \\ t_{b} & = & \min\left[t_{b3}, \ t_{b1}\right] \\ & = & \max\left[s_{b3}, \ s_{b2}\right] \\ & = & \max\left[3.36, \ 9.92\right] \\ & = & 9.92 \text{ mm} \end{array}$$

Available nozzle wall thickness new, t_{n} = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	$0.7 \cdot 1,203.265 =$	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	$0.49 \cdot 1,162.477 =$	569.614 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,162.477 =	569.614 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2}\cdot \text{Nozzle} \,\text{OD}\cdot \text{Leg}\cdot S_i = \frac{\pi}{2}\cdot 660.4\cdot 10.36\cdot 589.6$ = 63,339.41 kgf

(2) Outer fillet weld in shear $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 1,\!020.4 \cdot 10.66 \cdot 569.614 = 97,\!288.72 \text{ kg}_{\text{f}}$

(3) Nozzle wall in shear

 $\frac{\pi}{2}\cdot$ Mean nozzle dia $\cdot\,t_n\cdot S_n=\frac{\pi}{2}\cdot 649.29\cdot 11.11\cdot 842.286$ = 95,461.47 kgf

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 660.4 \cdot 11.71 \cdot 569.614 = 69,216.95 \text{ kg}_{\text{f}}$

(6) Upper groove weld in tension

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 660.4 \cdot 18 \cdot 1,041.334 = 194,441.8 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

$$\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_n$$

- $(8,\!244.7117 1,\!174.0622 + 2 \cdot 11.11 \cdot 1 \cdot (1 \cdot 14.76 1 \cdot 12.92)) \cdot 1,\!162.477$ =
- 82,669.97 kgf =

 $W_{1-1} =$ $(A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $(641.9987 + 5,835.6121 + 107.2256 + 113.5482) \cdot 1,162.477$ =
- 77,867.15 kgf =

$$W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$$

- $(641.9987 + 235.9012 + 107.2256 + 137.2255 + 2 \cdot 11.11 \cdot 14.76 \cdot 1) \cdot 1,162.477$ =
- <u>16,860.2</u> kg_f =

 $W_{3-3} =$ $(A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- = $(641.9987 + 235.9012 + 5,835.6121 + 107.2256 + 113.5482 + 137.2255 + 2 \cdot 11.11 \cdot 14.76 \cdot 1) \cdot 1,162.477$
- 86,017.8 kgf =

Load for path 1-1 lesser of W or W_{1-1} = 77,867.15 kg_f Path 1-1 through (2) & (3) = 97,288.72 + 95,461.47 = <u>192,750.19</u> kg_f Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or W_{2-2} = 16,860.2 kg_f Path 2-2 through (1), (5), (6) = 63,339.41 + 69,216.95 + 194,441.8 = <u>326,998.16</u> kg_f Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 82,669.97 \text{ kg}_{f}$ Path 3-3 through (2), (5) = 97,288.72 + 69,216.95 = <u>166,505.68</u> kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (cm ²)						UG-45 Su	mmary (mm)	
For P = 7.76 bar @ 21.11 °C The opening is adequately reinforced						The nozzle	passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>97.5998</u>	<u>97.6043</u>	<u>16.7</u>	<u>7.2851</u>	<u>3.556</u>	<u>64.8</u>	<u>5.2632</u>	<u>8.33</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W W ₁₋₁ s		Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
<u>94,821</u>	<u>87,637</u>	227,522	<u>22,071</u>	354,843	<u>99,364</u>	201,415	

Calculations for internal pressure 7.76 bar @ 21.11 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [635, 317.5 + (12.7 0) + (18 0)]$
- = 635 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (18 0), \ 2.5 \cdot (12.7 0) + 18 \right]$
- = 45 mm

Inner Normal Limit of reinforcement per UG-40

= 14 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{7.7557 \cdot 317.5}{1,180 \cdot 1 - 0.6 \cdot 7.7557}$$
$$= 2.1 \text{ mm}$$

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{7.7557 \cdot 2,250}{1,140 \cdot 1 - 0.6 \cdot 7.7557}$$

= 15.37 mm

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,162.477, S_p = 1,407.208 kg_f/cm²

$$f_{r1} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r2} = \text{lesser of 1 or } \frac{S_n}{S_v} = 1$$

$$f_{r3} = \text{lesser of } f_{r2} \text{ or } \frac{S_p}{S_v} = 1$$

$$f_{r4} = \text{lesser of 1 or } \frac{S_p}{S_v} = 1$$

$$A = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

$$= (635 \cdot 15.37 \cdot 1 + 2 \cdot 12.7 \cdot 15.37 \cdot 1 \cdot (1 - 1))/100$$

$$= 97.5998 \text{ cm}^2$$

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>16.7</u> cm²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (635 \cdot (1 \cdot 18 1 \cdot 15.37) 2 \cdot 12.7 \cdot (1 \cdot 18 1 \cdot 15.37) \cdot (1 1))/100$
- = 16.7 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= (2 \cdot (18 + 12.7) \cdot (1 \cdot 18 1 \cdot 15.37) 2 \cdot 12.7 \cdot (1 \cdot 18 1 \cdot 15.37) \cdot (1 1))/100$
- = 1.6148 cm²

 A_2 = smaller of the following= <u>7.2851</u> cm²

$$= 2 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot L_{pr}$$

- $= (2 \cdot (12.7 2.1) \cdot 1 \cdot 34.35) / 100$
- = 7.2851 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (12.7 2.1) \cdot 1 \cdot 34.35) / 100$
- = 7.2851 cm²

 A_3 = smaller of the following= 3.556 cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- = $(5 \cdot 18 \cdot 12.7 \cdot 1)/100$
- = <u>11.43</u> cm²

- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 12.7 \cdot 12.7 \cdot 1)/100$
- = <u>8.0645</u> cm²
- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 14 \cdot 12.7 \cdot 1)/100$
- = <u>3.556</u> cm²

$$A_{41} = Leg^2 \cdot f_{r3}$$

- = $(12.7^2 \cdot 1)/100$
- = <u>1.6129</u> cm²

$$A_{42} = Leg^2 \cdot f_{r4}$$

- = $(13^2 \cdot 1)/100$
- = <u>1.6903</u> cm²

$$A_{43} = Leg^2 \cdot f_{r2}$$

- = $(14^2 \cdot 1)/100$
- $= 1.96 \text{ cm}^2$

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- $= ((1,020.4 635 2 \cdot 12.7) \cdot 18 \cdot 1)/100$
- $= 64.8 \text{ cm}^2$
- $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$
 - = 16.7 + 7.2851 + 3.556 + 1.6129 + 1.6903 + 1.96 + 64.8
 - = <u>97.6043</u> cm²

As Area >= A the reinforcement is adequate.

UG-45 Nozzle Neck Thickness Check

$$egin{array}{rcl} t_{a\mathrm{UG-27}}&=&rac{P\cdot R_n}{S_n\cdot E-0.6\cdot P}+\mathrm{Corrosion}\ &=&rac{7.7557\cdot 317.5}{1,180\cdot 1-0.6\cdot 7.7557}+0\ &=&2.1\ \mathrm{mm}\ t_a&=&\max\left[t_{a\mathrm{UG-27}},\ t_{a\mathrm{UG-22}}
ight]\ &=&\max\left[2.1,\ 0
ight] \end{array}$$

= 2.1 mm

t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{7.7557\cdot 2,250}{1,140\cdot 1-0.6\cdot 7.7557} \ +0$
	=	15.37 mm
t_{b1}	=	$\max\ [t_{b1},\ t_{b\mathrm{UG16}}]$
	=	\max [15.37, 1.5]
	=	15.37 mm
t_b	=	$\min \ [t_{b3}, \ t_{b1}]$
	=	$\min \ [8.33, \ 15.37]$
	=	8.33 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	\max [2.1, 8.33]
	=	<u>8.33</u> mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 12.7 = 11.11 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	0.7.1,203.265 =	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,162.477 =	569.614 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,162.477 =	569.614 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 660.4 \cdot 12.7 \cdot 589.6 = 77,676.23 \text{ kg}_{\text{f}}$

(2) Outer fillet weld in shear

 $\frac{\pi}{2} \cdot \operatorname{Pad} \operatorname{OD} \cdot \operatorname{Leg} \cdot S_o = \frac{\pi}{2} \cdot 1,020.4 \cdot 13 \cdot 569.614 = \mathsf{118},689.96 \text{ kg}_\mathsf{f}$

(3) Nozzle wall in shear $\frac{\pi}{2} \cdot \text{Mean nozzle dia} \cdot t_n \cdot S_n = \frac{\pi}{2} \cdot 647.7 \cdot 12.7 \cdot 842.286 = 108,832.08 \text{ kg}_{\text{f}}$

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 660.4 \cdot 14 \cdot 569.614 = 82,724.71 \text{ kg}_f$

(6) Upper groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 660.4 \cdot 18 \cdot 1,041.334 = 194,441.8 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

- $\mathsf{W} = (A A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t F \cdot t_r)) \cdot S_v$
 - $= (9,759.9805 1,669.9967 + 2 \cdot 12.7 \cdot 1 \cdot (1 \cdot 18 1 \cdot 15.37)) \cdot 1,162.477$
 - = <u>94,820.71</u> kg_f

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $= (728.5147 + 6,480 + 161.29 + 169.0319) \cdot 1,162.477$
- = <u>87,637.21</u> kg_f

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (728.5147 + 355.6 + 161.29 + 195.9996 + 2 \cdot 12.7 \cdot 18 \cdot 1) \cdot 1,162.477$
- = <u>22,070.83</u> kg_f

 $W_{3-3} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r_1}) \cdot S_v$

- $= (728.5147 + 355.6 + 6,480 + 161.29 + 169.0319 + 195.9996 + 2 \cdot 12.7 \cdot 18 \cdot 1) \cdot 1,162.477$
- = <u>99,364.27</u> kg_f

Load for path 1-1 lesser of W or $W_{1-1} = 87,637.21 \text{ kg}_f$ Path 1-1 through (2) & (3) = 118,689.96 + 108,832.08 = <u>227,522.03</u> kg_f Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 22,070.83 \text{ kg}_{f}$ Path 2-2 through (1), (5), (6) = 77,676.23 + 82,724.71 + 194,441.8 = <u>354,842.74</u> kg_{f} Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 94,820.71 \text{ kg}_f$ Path 3-3 through (2), (5) = 118,689.96 + 82,724.71 = 201,414.67 kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for External Pressure

U	UG-37 Area Calculation Summary (cm ²)							mmary (mm)	
For Pe = 0.8 bar @ 40 °C The opening is adequately reinforced						The nozzle	passes UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}		
40.1213	<u>85.1106</u>	<u>13.9451</u>	<u>6.8703</u>	<u>2.359</u>	<u>58.3561</u>	<u>3.58</u>	<u>4.82</u>	11.11	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate			
Nozzle to inside shell fillet (Leg $_{43}$)	<u>7.78</u>	8.2 (corroded)	weld size is adequate			

Calculations for external pressure 0.8 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 $L_{R} = \max [d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [638.18, 319.09 + (12.7 1.59) + (18 3.24)]$
- = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

- L_{H} = min $[2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e]$
 - $= \min \left[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36 \right]$
 - = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_i - C_n - C)]$$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-28 trn = 1.11 mm

From UG-37(d)(1) required thickness $t_r = 12.57$ mm

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1,203.265, S_v = 1,162.477, S_p = 1,407.208 kg_f/cm²

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r3} = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 1

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} \qquad = \qquad 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

- $= (0.5 \cdot (638.18 \cdot 12.57 \cdot 1 + 2 \cdot 11.11 \cdot 12.57 \cdot 1 \cdot (1-1)))/100$
- = <u>40.1213</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>13.9451</u> cm²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 12.57) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.57) \cdot (1 1))/100$
- = 13.9451 cm²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 12.57) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.57) \cdot (1 1))/100$
- = 1.131 cm²

 A_2 = smaller of the following= <u>6.8703</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.11) \cdot 1 \cdot 34.35)/100$
- = 6.8703 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.11) \cdot 1 \cdot 34.35) / 100$
- = 6.8703 cm²

 A_3 = smaller of the following = <u>2.359</u> cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 1) / 100$
- $= 7.0196 \text{ cm}^2$
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 1) / 100$
- = <u>4.5242</u> cm²

- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 1)/100$
- = <u>2.359</u> cm²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = $(10.36^2 \cdot 1)/100$
- = <u>1.0723</u> cm²

$$A_{42} = Leg^2 \cdot f_{r4}$$

- = $(10.66^2 \cdot 1)/100$
- = <u>1.1355</u> cm²

 $A_{43} = Leg^2 \cdot f_{r2}$

- = $(11.71^2 \cdot 1)/100$
- = <u>1.3723</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- = $((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1)/100$
- $= 58.3561 \text{ cm}^2$

$$Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_{43}$$

- $= \quad 13.9451 + 6.8703 + 2.359 + 1.0723 + 1.1355 + 1.3723 + 58.3561$
- = <u>85.1106</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:	$t_{ m min}$	$= \min [19 \text{ mm}, t_n, t_e] = 11.11 \text{ mm}$
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ <u>6</u> mm
	$t_{c(actual)}$	$= 0.7 \cdot Leg = 0.7 \cdot 10.36 = 7.25 \text{ mm}$
Outer fillet:	$t_{ m min}$	$=$ min [19 mm, t_e, t] $=$ 14.76 mm
	$t_{w(\min)}$	$= 0.5 \cdot t_{\min} = \overline{7.38}$ mm
	$t_{w(\mathit{actual})}$	$= 0.7 \cdot Leg = 0.7 \cdot 10.66 = 7.46 \ \mathrm{mm}$

Lower fillet: $t_{\min} = \min [19 \text{ mm}, t_n, t] = 11.11 \text{ mm}$ $t_{w(\min)} = 0.7 \cdot t_{\min} = \underline{7.78} \text{ mm}$ $t_{w(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 11.71 = 8.2 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 2.7 mm

Available nozzle wall thickness new, t_{n} = $~0.875 \cdot 12.7$ = 11.11 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{179.17}{660.4} = 0.2713$$
$$\frac{D_o}{t} = \frac{660.4}{1.11} = 593.9318$$

From table G: A = 0.000357

From table CS-2 Metric: $B = 363.3769 \text{ kg/cm}^2(356.35 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 356.35}{3 \cdot (660.4/1.11)} = 0.8 \text{ bar}$$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 1.11 + 1.59 = 2.7 \text{ mm}$

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)					UG-45 Su	mmary (mm)		
For Pe = 1.16 bar @ 40 °C The opening is adequately reinforced				The nozzle	passes UG-45			
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
47.0939	71.0454		<u>6.7503</u>	<u>2.359</u>	<u>58.3561</u>	<u>3.58</u>	<u>5.54</u>	11.11

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate			
Nozzle to inside shell fillet (Leg $_{43}$)	<u>7.78</u>	8.2 (corroded)	weld size is adequate			

Calculations for external pressure 1.16 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = max [638.18, 319.09 + (12.7 1.59) + (18 3.24)]
- = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36 \right]$
- = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_i - C_n - C)]$$

- $= \min \left[12.4, \ 2.5 \cdot (18 3.24), \ 2.5 \cdot (12.7 1.59 1.6) \right]$
- = 12.4 mm

Nozzle required thickness per UG-28 t_{rn} = 1.29 mm

From UG-37(d)(1) required thickness t_r = 14.76 mm

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1,203.265, S_v = 1,162.477, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 1

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

- = $(0.5 \cdot (638.18 \cdot 14.76 \cdot 1 + 2 \cdot 11.11 \cdot 14.76 \cdot 1 \cdot (1 1)))/100$
- = <u>47.0939</u> cm²

Area available from FIG. UG-37.1

 $A_1 = \text{larger of the following} = 0 \text{ cm}^2$

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 14.76) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 14.76) \cdot (1 1))/100$
- $= 0 \text{ cm}^2$

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 14.76) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 14.76) \cdot (1 1)) / 100$
- = 0 cm²

 A_2 = smaller of the following= <u>6.7503</u> cm²

$$= 2 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot L_{pr}$$

- $= (2 \cdot (11.11 1.29) \cdot 1 \cdot 34.35) / 100$
- = 6.7503 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.29) \cdot 1 \cdot 34.35)/100$
- = 6.7503 cm²

 A_3 = smaller of the following= 2.359 cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 1) / 100$
- = <u>7.0196</u> cm²
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 1) / 100$
- = <u>4.5242</u> cm²
- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 1) / 100$
- $= 2.359 \text{ cm}^2$

 $A_{41} = Leg^2 \cdot f_{r3}$

- = $(10.36^2 \cdot 1)/100$
- = <u>1.0723</u> cm²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = $(10.66^2 \cdot 1)/100$
- = <u>1.1355</u> cm²

 $\mathsf{A}_{43} = Leg^2 \cdot f_{r2}$

- = $(11.71^2 \cdot 1)/100$
- = <u>1.3723</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- $= ((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1)/100$
- = <u>58.3561</u> cm²

$$Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$$

- = 0+6.7503+2.359+1.0723+1.1355+1.3723+58.3561
- = <u>71.0454</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:	$t_{ m min}$	$= \min [19 \text{ mm}, t_n, t_e] = 11.11 \text{ mm}$
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ <u>6</u> mm
	$t_{c(actual)}$	$= 0.7 \cdot \text{Leg} = 0.7 \cdot 10.36 = 7.25 \text{ mm}$
Outer fillet:	$t_{ m min}$	$=$ min [19 mm, t_e, t] $=$ 14.76 mm

- $t_{w(\min)} = 0.5 \cdot t_{\min} = {7.38 \over 7.38} \;\; {
 m mm}$
- $t_{w(\mathit{actual})} = 0.7 \cdot \mathrm{Leg} = 0.7 \cdot 10.66 = 7.46 ~\mathrm{mm}$
- Lower fillet: t_{\min} = min [19 mm, t_n , t] = 11.11 mm $t_{w(\min)}$ = $0.7 \cdot t_{\min} = \overline{7.78}$ mm
 - $t_{w(\mathit{actual})} = 0.7 \cdot \mathrm{Leg} = 0.7 \cdot 11.71 = 8.2 ~\mathrm{mm}$

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	2.87 mm
t_a	=	$\max \; [t_{a { m UG-28}} , \; t_{a { m UG-22}}]$
	=	$\max\ [2.87,\ 0]$
	=	2.87 mm

t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{1.1628{\cdot}2{,}251.6}{1{,}140{\cdot}1{-}0.6{\cdot}1{.}1628} + 3.24$
	=	5.54 mm
t_{b2}	=	$\max \left[t_{b2}, \ t_{b\mathrm{UG16}} \right]$
	=	$\max[5.54, 3.09]$
	=	5.54 mm
t_b	=	$\min [t_{b3}, t_{b2}]$
	=	$\min [9.92, 5.54]$
	=	5.54 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	\max [2.87, 5.54]
	=	<u>5.54</u> mm

Available nozzle wall thickness new, t_{n} = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{179.17}{660.4} = 0.2713$$
$$\frac{D_o}{t} = \frac{660.4}{1.29} = 513.1493$$

From table G: A = 0.000449

From table CS-2 Metric: $B = 456.3599 \text{ kg/cm}^2(447.54 \text{ bar})$

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 447.54}{3 \cdot (660.4/1.29)} = 1.16 \;\; {
m bar}$

Design thickness for external pressure $P_a = 1.16$ bar

 $t_a = t + \text{Corrosion} = 1.29 + 1.59 = \textbf{2.87} \text{ mm}$

Platform/Ladder #1

Platform		
Distance from Base to Datum	7,500 mm	
Attached To	Cylinder #1	
Start Angle	0.00 degrees	
End Angle	270.00 degrees	
Shell Clearance, L _c	152.4 mm	
Width, W	914.4 mm (0.91 m)	
Projected Length, L	2,133.6 mm (2.13 m)	
Wind Force Coefficient, C _f	2.00	
Floor Grating		
Unit Weight	48.82 kg/m ²	
Area	12.40 m ²	
Railing		
Height, h	1,066.8 mm (1.07 m)	
Length	17543.67 mm (17.54 m)	
Unit Weight	17.86 kg/m	
Ladder		
Distance from Start to Datum	-1,500 mm	
Angle	90.00 degrees	
Unit Weight	26.79 kg/m	
Length	9,000 mm (9.00 m)	
Allow Cage on Ladder	Yes	
Weight		
Platform & Railing Weight	918.70 kg	
Ladder Weight	241.08 kg	
Total Weight	1159.78 kg	
Included in Vessel Lift & Shipping Weight	No	
Present When Vessel is Empty	Yes	
Present During Test	Yes	

Platform Wind Shear Calculation

Method and assumptions taken from Wind Loads and Anchor Bolt Design for Petrochemical Facilities, ASCE, 1997.

Platform $H_p = 152.4 \text{ mm}$ depth: Railing effective $H_r = 243.84 \text{ mm}$ height: Angle subtended Angle = 270.00° by ends of platform: Length from vessel center line R = 3,334.8 mm to platform outer edge: Platform projected length: $L_{eP} = 2 \cdot R = 2 \cdot 3,334.8 = 6,669.6 \text{ mm}$ Front Railing $L_{eFR} = L_{eP} =$ 6,669.6 mm projected length: $\left(\frac{360-\text{angle}}{2}\right)$ 360 - angle $\left(\frac{360-270.00}{2}
ight)+914.4$ $L_{e RR} = L_{eFR} - 2 \cdot R \cdot \sin \left(- 2 \cdot R \cdot i \right) \right) \right) \right) \right) \right) \right) \right)} \right)} \right)$ $2 = 6,669.6 - 2 \cdot 3,334.8 \cdot \sin^{-1}$ W \sin Rear Railing $\cdot \sinigg(rac{360-270.00}{2}$ projected $) \cdot 2 =$ length: 3,246.64 mm Platform $A_{eP} = H_p \cdot L_{eP} = 152.4 \cdot 6{,}669.6 = 10{,}164.47$ cm² projected area: Front Railing $A_{eFR} = H_r \cdot L_{eFR} = 243.84 \cdot 6{,}669.6 = 16{,}263.15 \ \ {\rm cm}^2$ projected area: Rear Railing $A_{\rm e\,RR} = H_r \cdot L_{\,\rm e\,RR} = 243.84 \cdot 3,246.64 = 7,916.6 \ {\rm cm}^2$ projected area: Total $A_e = A_{eP} + A_{eFR} + A_{e\,\rm RR} = 10,\!164.47 + 16,\!263.15 + 7,\!916.6 = 34,\!344.22 \ {\rm \,cm^{\,2}}$ projected area: Local $P_w = 0.6 \cdot \text{qz} \cdot G = 0.6 \cdot 587.2 \cdot 0.8749 = 308.24 Pa$ wind pressure: Wind $V_p = P_w \cdot C_f \cdot A_e \cdot \text{MetricFactor} = 308.24 \cdot 2.00 \cdot 34,\!344.22 \cdot 0.101972 = 215.90 \ \text{kg}f$ shear:

Cylinder #2

	ASME Sectior	n VIII Division 1	, 2021 Edition Metr	ic				
Com	ponent	Cylinder						
Ма	Material		I6 70 (II-D Metric p. :	20, ln. 45)				
Impact Tested	Normalized	Fine Grain Practice	Fine Grain Practice PWHT Maximize MD No MAWP					
No	No	No	No	No				
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)				
Int	ernal	7	40	5				
Ext	ternal	0.8	40	5				
		Static Liquid	Head					
Cor	ndition	P _s (bar)	H _s (mm)	SG				
Operating		0.54	0.98					
Test horizontal		0.44	1					
		Dimension	IS					
Inner	Diameter	4,500 mm						
Le	ength		2,438.4 mm					
Nominal	Thickness	18 mm						
Corrosion	Inner	1.6 mm						
Concellent	Outer	1.64 mm						
		Weight and Ca	pacity					
		Wei	ght (kg)	Capacity (liters)				
Ν	lew	4,831.5		38,781.08				
Cor	roded	3,961.8 38,836.25		3,961.8		3,961.8		38,836.25
		Radiograpl	hy					
Longitu	dinal seam		Full UW-11(a) Type	e 1				
Top Circum	ferential seam	Full UW-11(a) Type 2						
Bottom Circu	mferential seam		Full UW-11(a) Type	e 2				

Results Summary						
Governing condition	External pressure					
Minimum thickness per UG-16	1.5 mm + 3.24 mm = 4.74 mm					
Design thickness due to internal pressure (t)	<u>15.59 mm</u>					
Design thickness due to external pressure (t _e)	<u>15.93 mm</u>					
Design thickness due to combined loadings + corrosion	<u>9.84 mm</u>					
Maximum allowable working pressure (MAWP)	<u>8.47 bar</u>					
Maximum allowable pressure (MAP)	<u>10.99 bar</u>					
Maximum allowable external pressure (MAEP)	<u>1.13 bar</u>					
Rated MDMT	-105 °C					

UCS-66 Material Toughness Requirements					
$t_r = rac{0.54\cdot 2,251.6}{1,380\cdot 1 - 0.6\cdot 0.54} =$	0.89 mm				
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.89 \cdot 1}{18 - 3.24} =$	0.0601				
$egin{array}{llllllllllllllllllllllllllllllllllll$	0.0157				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design MI	DMT of 5°C.				

Design thickness, (at 40 °C) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{7.54 \cdot 2,251.6}{1,380 \cdot 1.00 - 0.60 \cdot 7.54} + 3.24 = \underline{15.59} \text{ mm}$$

Maximum allowable working pressure, (at 40 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{1,380 \cdot 1.00 \cdot 14.76}{2,251.6 + 0.60 \cdot 14.76} - 0.54 = \underline{8.47} \text{ bar}$

Maximum allowable pressure, (at 21.11 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{1,380 \cdot 1.00 \cdot 18}{2,250 + 0.60 \cdot 18} = \underline{10.99} \text{ bar}$

External Pressure, (Corroded & at 40 °C) UG-28(c)

 $\frac{L}{D_o} = \frac{4,\!297.99}{4,\!536} = 0.9475$

 $\frac{D_o}{t} = \frac{4{,}536}{12.69} = 357.3338$

From table G: A = 0.000215

From table CS-2 Metric: B = 218.6278 kg/cm²(214.4 bar)

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 214.4}{3 \cdot (4{,}536/12.69)} = 0.8 \;\; {
m bar}$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 12.69 + 3.24 = 15.93 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,297.99}{4,536} = 0.9475$$
$$\frac{D_o}{4,536} = \frac{4,536}{4,536} = 207.2171$$

 $\frac{D_o}{t} = \frac{4,530}{14.76} = 307.3171$

From table G: A = 0.000262

From table CS-2 Metric: $B = 266.6019 \text{ kg/cm}^2 (261.4467 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 261.45}{3 \cdot (4,536/14.76)} = \underline{1.13} \text{ bar}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 18}{2,259}\right) \cdot \left(1 - \frac{2,259}{\infty}\right) = 0.3984\%$$

The extreme fiber elongation does not exceed 5%.

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

$$\begin{split} P_v &= \frac{W}{2 \cdot \pi \cdot R_m} + \frac{M}{\pi \cdot R_m^2} = \frac{10 \cdot 15, 516.9}{2 \cdot \pi \cdot 2, 258.98} + 10000 \cdot 5, 312 \frac{14.2458}{\pi \cdot 2, 258.98^{-2}} = 14.2458 \text{ kg/cm} \\ \alpha &= \frac{P_v}{P_e \cdot D_o} = 9.803 \cdot \frac{14.2458}{0.8 \cdot 4, 536} = 0.0385 \\ n &= 7 \\ m &= \frac{1.23}{\left(\frac{L}{D_o}\right)^2} = \frac{1.23}{\left(\frac{4,297.99}{4,536}\right)^2} = 1.37 \\ Ratio P_e &= \frac{n^2 - 1 + m + m \cdot \alpha}{n^2 - 1 + m} = \frac{7^2 - 1 + 1.37 + 1.37 \cdot 0.0385}{7^2 - 1 + 1.37} = 1.0011 \end{split}$$

 $Ratio P_e \cdot P_e \leq MAEP$

$(1.0011 \cdot 0.8 = 0.8) \le 1.13$

Cylinder design thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

$$\begin{split} P_v &= \frac{\left(1 + 0.14 \cdot S_{DS}\right) \cdot W}{2 \cdot \pi \cdot R_m} + \frac{M}{\pi \cdot R_m^2} = \frac{1.08 \cdot 10 \cdot 15,516.9}{2 \cdot \pi \cdot 2,258.98} + 1000 \cdot 61,475 \frac{1}{\pi \cdot 2,258.98^{-2}} = 50.1970 \text{ kg/cm} \\ \alpha &= \frac{P_v}{P_e \cdot D_o} = 9.803 \cdot \frac{50.197}{0.8 \cdot 4,536} = 0.1357 \\ n &= 7 \\ m &= \frac{1.23}{\left(\frac{L}{D_o}\right)^2} = \frac{1.23}{\left(\frac{4.297.99}{4,536}\right)^2} = 1.37 \\ Ratio P_e &= \frac{n^2 - 1 + m + m \cdot \alpha}{n^2 - 1 + m} = \frac{7^2 - 1 + 1.37 + 1.37 \cdot 0.1357}{7^2 - 1 + 1.37} = 1.0038 \\ Ratio P_e \cdot P_e \leq \text{MAEP} \end{split}$$

 $(1.0038 \cdot 0.8 = 0.8) \le 1.13$

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads								
Condition	Allowable Stress		Before UG-23 e (kg/cm ²)	Temperature	Corrosion	Load	Req'd Thk Due	Req'd Thk Due to
	r (bai)	S _t S _c	(0)				compression (mm)	
Operating Hot & Corroded	7	1 407 2	805.5	40	3 24	Wind	<u>6.31</u>	<u>6.23</u>
		1,101.2	000.0		0.21	Seismic	<u>6.6</u>	<u>5.94</u>
Operating Hot & New	7	1 407 2	862	40	0	Wind	<u>6.3</u>	<u>6.21</u>
	,	1,407.2	002	40		Seismic	<u>6.59</u>	<u>5.91</u>
Hot Shut Down, Corroded	0	1,407.2	<u>805.5</u>	40	3.24	Wind	<u>0.04</u>	<u>0.18</u>
The onder Down, Conoded						Seismic	<u>0.26</u>	<u>0.62</u>
Het Shut Down, Now	0	1,407.2	<u>862</u>	40	0	Wind	<u>0.05</u>	<u>0.19</u>
The shut bown, new						Seismic	<u>0.26</u>	<u>0.62</u>
Empty Corrodod	0	1 407 2	905 5	21.11	2.24	Wind	<u>0.04</u>	<u>0.18</u>
	0	1,407.2	005.5	21.11	3.24	Seismic	<u>0.03</u>	<u>0.26</u>
Empty New	0	1 407 2			0	Wind	<u>0.05</u>	<u>0.19</u>
	0	1,407.2	002	21.11		Seismic	<u>0.03</u>	<u>0.27</u>
Maguum		2.24	Wind	<u>1.18</u>	<u>1.32</u>			
	-0.0	1,407.2	000.0	40	40 3.24	Seismic	<u>0.73</u>	<u>1.76</u>
Hot Shut Down, Corroded, Weight & Eccentric Moments Only	0	1,407.2	<u>805.5</u>	40	3.24	Weight	<u>0.11</u>	<u>0.16</u>

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC},$ (table CS-2 Metric)

$$A = {0.125 \over R_o/t} = {0.125 \over 2,268/14.76} = 0.000813$$

 $B=805.5~{
m kg/cm}^2$

$$S = {1,407.2 \over 1.00} = 1,407.2 ~{
m kg/cm}^2$$

 $S_{cHC} = \min(B,S) = \frac{805.5 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Hot and New- S_{cHN}, (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,268/18} = 0.000992$$

$$B = 862 \text{ kg/cm}^2$$

$$S = rac{1,407.2}{1.00} = 1,407.2 \, {
m kg/cm}^2$$

 $S_{cHN} = \min(B,S) = \frac{862 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Cold and New- S_{cCN} , (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,268/18} = 0.000992$$

 $B=862~~{
m kg/cm}^2$

$$S = rac{1,407.2}{1.00} = 1,407.2 \, {
m kg/cm}^2$$

 $S_{cCN} = \min(B,S) = 862 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and Corroded- $S_{cCC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,268/14.76} = 0.000813$$

$$B = 805.5$$
 kg/cm²

$$S = \frac{1{,}407.2}{1.00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{c\mathbb{C}} = \min(B,S) = 805.5 \text{ kg/cm}^2$

Allowable Compressive Stress, Vacuum and Corroded- $S_{cVC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,\!268/14.76} = 0.000813$$

 $B\,=805.5\,$ kg/cm 2

$$S = \frac{1{,}407.2}{1.00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{cVC} = \min(B,S) = 805.5 \text{ kg/cm}^2$

Operating, Hot & Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2,251.6}{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.34 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{h}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 5,312 \frac{1}{\pi \cdot 2,258.98} \frac{2}{2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.03 \text{ mm} \\ t_{w} &= \frac{0.60 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot 15,516.9}{2 \cdot \pi \cdot 2,258.98 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 6.34 + 0.03 - (0.05) \\ &= 6.31 \text{ mm} \\ t_{wcc} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{15,516.9}{2 \cdot \pi \cdot 2,258.98 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.09 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.03 + (0.09) - (6.34)| \\ &= 6.23 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (14.76 - 0.03 + (0.05))}{2,251.6 - 0.40 \cdot (14.76 - 0.03 + (0.05))}$$
$$= 16.35 \text{ bar}$$

Operating, Hot & New, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2,250}{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{\pi}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 5,325.5 \frac{M}{\pi \cdot 2,259 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.03 \text{ mm} \\ t_{w} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot 17,932.5}{2 \cdot \pi \cdot 2,259 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.06 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 6.33 + 0.03 - (0.06) \\ &= 6.3 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{17,932.5}{2 \cdot \pi \cdot 2,259 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.1 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.03 + (0.1) - (6.33)| \\ &= 6.21 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (18 - 0.03 + (0.06))}{2,250 - 0.40 \cdot (18 - 0.03 + (0.06))}$$
$$= 19.97 \text{ bar}$$

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 5,312 \frac{M}{\pi \cdot 2,258.98^{-2} \cdot 789.91 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 15,516.9 \frac{1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.04 - (0.08)| \\ &= 0.04 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{15,516.9}{2 \cdot \pi \cdot 2,258.98 \cdot 789.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.14 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.04 + (0.14) - (0) \\ &= 0.18 \text{ mm} \\ \\ \text{Hot Shut Down, New, Wind, Bottom Seam} \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 5,312 \frac{M}{\pi \cdot 2,258,98^{-2} \cdot 789,91 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 15,516.9 \frac{2 \cdot \pi \cdot 2,258.98 \cdot 789,91 \cdot 1.00}{2 \cdot \pi \cdot 2,258.98 \cdot 789,91 \cdot 1.00} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.04 - (0.08)| \\ &= 0.04 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{15,516.9}{2 \cdot \pi \cdot 2,258,98 \cdot 789,91 \cdot 1.00} \cdot 98.0665 \\ &= 0.14 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.04 + (0.14) - (0) \\ &= 0.18 \text{ mm} \\ \\ \hline \text{Empty, New, Wind, Bottom Seam} \end{split}$$
$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 5,325.5 \frac{1}{\pi \cdot 2,259^{-2} \cdot 845.38 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 17,932.5 \frac{1}{2 \cdot \pi \cdot 2,259 \cdot 845.38 \cdot 1.00} \cdot 98.0665 \\ &= 0.09 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.04 - (0.09)| \\ &= 0.05 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{17,932.5}{2 \cdot \pi \cdot 2,259 \cdot 845.38 \cdot 1.00} \cdot 98.0665 \\ &= 0.15 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.04 + (0.15) - (0) \\ &= 0.19 \text{ mm} \\ \hline \text{Vacuum, Wind, Bottom Seam} \end{split}$$

178/340

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-0.8 \cdot 2,251.6}{2 \cdot 789.91 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.14 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 5,312 \frac{1}{\pi \cdot 2,258.98^{-2} \cdot 789.91 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= 0.60 \cdot 15,516.9 \frac{1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (total, net compressive) \\ &= |-1.14 + 0.04 - (0.08)| \\ &= 1.18 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{15,516.9}{2 \cdot \pi \cdot 2,258.98 \cdot 789.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.14 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0.04 + (0.14) - (-1.14) \\ &= 1.32 \text{ mm} \\ \end{split}$$

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 789.91 \cdot 1.00 \cdot (14.76 - 0.04 - 0.14)}{2,251.6 - 0.40 \cdot (14.76 - 0.04 - 0.14)}$$
$$= \underline{10.26} \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

 $\mathbf{\nabla}$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 2,811.1 \frac{1}{\pi \cdot 2,258.98^{-2} \cdot 789.91 \cdot 1.00} \cdot 98066.5 \\ &= 0.02 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 15,516.9 \frac{1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.14 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.02 - (0.14)| \\ &= 0.11 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.02 + (0.14) - (0) \\ &= 0.16 \text{ mm} \end{split}$$

Operating, Hot & Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2,251.6}{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.34 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 61,475 \frac{M}{\pi \cdot 2,258.98} \frac{2}{\cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.3 \text{ mm} \\ t_{w} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.52 \cdot 15,516.9}{2 \cdot \pi \cdot 2,258.98 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 6.34 + 0.3 - (0.04) \\ &= 6.6 \text{ mm} \\ t_{w} c &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{1.08 \cdot 15,516.9}{2 \cdot \pi \cdot 2,258.98 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.09 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0.3 + (0.09) - (6.34)| \\ &= 5.94 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (14.76 - 0.3 + (0.04))}{2,251.6 - 0.40 \cdot (14.76 - 0.3 + (0.04))}$$
$$= 16.04 \text{ bar}$$

Operating, Hot & New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1.380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 63.0779 \frac{M}{\pi \cdot 2.259^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.31 \text{ mm} \\ t_{w} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.52 \cdot 17, 932.5}{2 \cdot \pi \cdot 2.259 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 6.33 + 0.31 - (0.05) \\ &= 6.59 \text{ mm} \\ t_{w} c &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{1.08 \cdot 17, 932.5}{2 \cdot \pi \cdot 2.259 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.11 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0.31 + (0.11) - (6.33)| \\ &= 5.91 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (18 - 0.31 + (0.05))}{2,250 - 0.40 \cdot (18 - 0.31 + (0.05))}$$
$$= 19.65 \text{ bar}$$

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$61,475 {\pi \cdot 2,258.98^{-2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5$	
	=	0.3 mm	
tw	=	$\frac{\left(0.6-0.14\cdot S_{DS}\right)\cdot W}{2\cdot \pi\cdot R_m\cdot S_t\cdot K_s\cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 15,516.9}{2\cdot \pi\cdot 2,\!258.98\cdot 1,\!380\cdot 1.00\cdot 0.90}\cdot 98.0665$	
	=	0.04 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.3-(0.04)	
	=	<u>0.26 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$61,475 {\pi \cdot 2,258.98^{-2} \cdot 789.91 \cdot 1.00} \cdot 98066.5$	
	=	0.48 mm	
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08\cdot 15,516.9}{2\cdot \pi\cdot 2,258.98\cdot 789.91\cdot 1.00}\cdot 98.0665$	
	=	0.15 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.48+(0.15)-(0)	
	=	<u>0.62 mm</u>	
Hot :	Sh	ut Down, New, Seismic, Bottom Seam	

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$63,077.9 \underbrace{\qquad}_{\pi \ \cdot \ 2,259 \ ^2 \ \cdot \ 1,380 \ \cdot \ 1.00 \ \cdot \ 0.90} \ \cdot \ 98066.5$	
	=	0.31 mm	
tw	=	$\frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 17,932.5}{2\cdot \pi\cdot 2,259\cdot 1,380\cdot 1.00\cdot 0.90}\cdot 98.0665$	
	=	0.05 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.31-(0.05)	
	=	<u>0.26 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$63,077.9 \underbrace{\qquad}_{\pi \ \cdot \ 2,259^{\ 2} \ \cdot \ 845.38 \ \cdot \ 1.00} \ \cdot \ 98066.5$	
	=	0.46 mm	
t _{w c}	=	$\frac{\left(1+0.14 \cdot S_{DS}\right) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08\cdot 17,932.5}{2\cdot \pi\cdot 2,259\cdot 845.38\cdot 1.00}\cdot 98.0665$	
	=	0.16 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.46 + (0.16) - (0)	
	=	<u>0.62 mm</u>	
<u>Emp</u>	ty,	Corroded, Seismic, Bottom Seam	

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$14,344 {\pi \cdot 2,258.98^{-2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5$	
	=	0.07 mm	
t _w	=	$\frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 15,516.9}{2\cdot \pi\cdot 2,\!258.98\cdot 1,\!380\cdot 1.00\cdot 0.90}\cdot 98.0665$	
	=	0.04 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.07-(0.04)	
	=	<u>0.03 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$\frac{14,344}{\pi\cdot 2,\!258.98^{-2}\cdot 789.91\cdot 1.00}\cdot 98066.5$	
	=	0.11 mm	
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08\cdot 15,516.9}{2\cdot \pi\cdot 2,258.98\cdot 789.91\cdot 1.00}\cdot 98.0665$	
	=	0.15 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.11+(0.15)-(0)	
	=	<u>0.26 mm</u>	*
Emp	tv.	New, Seismic, Bottom Seam	

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$16,026.3 \underbrace{\pi \cdot 2,259\ ^2 \cdot 1,380 \cdot 1.00 \cdot 0.90}_{\bullet \ 0.90} \cdot 98066.5$	
	=	0.08 mm	
tw	=	$\frac{\left(0.6-0.14\cdot S_{DS}\right)\cdot W}{2\cdot \pi\cdot R_m\cdot S_t\cdot K_s\cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 17,932.5}{2\cdot \pi\cdot 2,259\cdot 1,380\cdot 1.00\cdot 0.90}\cdot 98.0665$	
	=	0.05 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.08-(0.05)	
	=	<u>0.03 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$16,026.3 \underbrace{\pi \cdot 2,259^{-2} \cdot 845.38 \cdot 1.00} \cdot 98066.5$	
	=	0.12 mm	
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08\cdot 17,932.5}{2\cdot \pi\cdot 2,259\cdot 845.38\cdot 1.00}\cdot 98.0665$	
	=	0.16 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.12+(0.16)-(0)	
	=	<u>0.27 mm</u>	ま
Vacı	un	n, Seismic, Bottom Seam	

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 789.91 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.14 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 61,475 \frac{M}{\pi \cdot 2.258.98^{-2} \cdot 789.91 \cdot 1.00} \cdot 98066.5 \\ &= 0.48 \text{ mm} \\ t_{w} &= (0.6 - 0.14 \cdot S_{DS}) \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \quad (\text{Weight}) \\ &= 0.52 \cdot 15,516.9 \frac{1}{2 \cdot \pi \cdot 2.258.98 \cdot 789.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.07 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (total, net compressive) \\ &= |-1.14 + 0.48 - (0.07)| \\ &= 0.73 \text{ mm} \\ t_{w} c &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \quad (\text{Weight}) \\ &= \frac{1.08 \cdot 15,516.9}{2 \cdot \pi \cdot 2.258.98 \cdot 789.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.15 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{rc} \qquad (total required, compressive) \\ &= 0.48 + (0.15) - (-1.14) \\ &= 1.76 \text{ mm} \end{split}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 789.91 \cdot 1.00 \cdot (14.76 - 0.48 - 0.15)}{2,251.6 - 0.40 \cdot (14.76 - 0.48 - 0.15)}$$

= <u>9.94</u> bar

Nozzle #3 (N3)

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.47-2017 Flange					
Description NPS 26 Class 150 WN A105 Series A					
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 410, In. 32)				
Blind included	Yes				
Rated MDMT	-48°C				
Liquid static head 0.4 bar					
MAWP rating 19.53 bar @ 40°C					
MAP rating	19.6 bar @ 21.11°C				
Hydrotest rating	30 bar @ 21.11°C				
PWHT performed	No				
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	No				
Impact Tested	No				
Circumferential joint radiography	Full UW-11(a) Type 1				
Bore diameter, B (specified by purchaser) 647.7 mm					
Notes					
Flange and blind rated MDMT per UCS-66(b)(1)(b) = -48°C (Coincident ratio = 0.3955) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C					

UCS-66 Material Toughness Requirements Nozzle						
$t_r = rac{7.78\cdot 319.09}{1,180\cdot 1 - 0.6\cdot 7.78} =$	2.11 mm					
Stress ratio $= \frac{t_r \cdot E^*}{t_n - c} = \frac{2.11 \cdot 1}{11.11 - 1.59} =$	0.2218					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MDMT of 5°C.						

UCS-66 Material Toughness Requirements Pad						
Governing thickness, t _g =	18 mm					
MDMT =	-29°C					
Material is exempt from impact testing per UG-20(f) at	the Design MDMT of 5°C					

Reinforcement Calculations for Internal Pressure

	UG-37 A	UG-45 Sui	mmary (mm)					
	The	The nozzle	passes UG-45					
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
78.0034	85.4456	<u>16.4993</u>	<u>5.3432</u>	2.0173	<u>58.3594</u>	<u>3.2264</u>	<u>9.92</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)								
All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength		
87,244	<u>92,532</u>	213,245	<u>17,247</u>	<u>329,436</u>	100,969	189,431		

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate				
Nozzle to inside shell fillet (Leg_{43})	<u>7.78</u>	8.2 (corroded)	weld size is adequate				

Calculations for internal pressure 7.43 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_{n} + (t_{n} C_{n}) + (t C)]$
 - $= \max \left[638.18, \ 319.09 + (12.7 1.59) + (18 3.24) \right]$
 - = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

- $= \min \left[2.5 \cdot (t-C), \ 2.5 \cdot (t_n C_n) + t_e \right]$
- = min $[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36]$
- = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$L_{I} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_{i} - C_{n} - C)]$$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{7.4296 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 7.4296}$$

= 2.02 mm

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{7.4296 \cdot 2,251.6}{1,380 \cdot 1 - 0.6 \cdot 7.4296}$$
$$= 12.16 \text{ mm}$$

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r2}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r_1})$$

- $= (638.18 \cdot 12.16 \cdot 1 + 2 \cdot 11.11 \cdot 12.16 \cdot 1 \cdot (1 0.8551))/100$
- $= \frac{78.0034}{2}$ cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>16.4993</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 12.16) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.16) \cdot (1 0.8551)) / 100$
- = 16.4993 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1-f_{r1})$$

- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 12.16) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.16) \cdot (1 0.8551)) / 100$
- = 1.2606 cm²

 A_2 = smaller of the following= <u>5.3432</u> cm²

$$= 2 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot L_{pr}$$

- $= (2 \cdot (11.11 2.02) \cdot 0.8551 \cdot 34.35)/100$
- = 5.3432 cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 2.02) \cdot 0.8551 \cdot 34.35)/100$
- = 5.3432 cm²

 A_3 = smaller of the following= 2.0173 cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 0.8551)/100$
- $= 6.003 \text{ cm}^2$
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>3.8688</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 0.8551)/100$
- = <u>2.0173</u> cm²
- $A_{41} = Leg^2 \cdot f_{r3}$
 - = (10.36² · 0.8551)/100
 - = <u>0.9174</u> cm²
- $A_{42} = Leg^2 \cdot f_{r4}$
 - = $(10.66^2 \cdot 1)/100$
 - = <u>1.1355</u> cm²
- $A_{43} = Leg^2 \cdot f_{r2}$
 - = $(11.71^2 \cdot 0.8551)/100$
 - = <u>1.1735</u> cm²

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r_4}$

- $= ((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1) / 100$
- = 58.3594 cm²
- $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$
 - = 16.4993 + 5.3432 + 2.0173 + 0.9174 + 1.1355 + 1.1735 + 58.3594
 - = <u>85.4456</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Outer fillet: t_{\min} = min [19 mm, t_e , t] = 14.76 mm $t_{w(\min)}$ = $0.5 \cdot t_{\min} = \overline{7.38}$ mm $t_{w(actual)}$ = $0.7 \cdot \text{Leg} = 0.7 \cdot 10.66 = 7.46$ mm

Lower fillet: $t_{\min} = \min [19 \text{ mm}, t_n, t] = 11.11 \text{ mm}$ $t_{w(\min)} = 0.7 \cdot t_{\min} = \overline{7.78} \text{ mm}$ $t_{w(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 11.71 = 8.2 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{rcl} t_{a\text{UG-27}} & = & \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion} \\ & = & \frac{7.4296 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 7.4296} + 1.59 \\ & = & 3.6 \text{ mm} \\ t_a & = & \max[t_{a\text{UG-27}}, t_{a\text{UG-22}}] \\ & = & \max[3.6, \ 0] \\ & = & 3.6 \text{ mm} \\ t_b1 & = & \frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion} \\ & = & \frac{7.4296 \cdot 2.251.6}{1,380 \cdot 1 - 0.6 \cdot 7.4296} + 3.24 \\ & = & 15.4 \text{ mm} \\ t_{b1} & = & \max[t_{b1}, \ t_{b2}]_{c16}] \\ & = & \max[15.4, \ 3.09] \\ & = & 15.4 \text{ mm} \\ t_b & = & \min[t_{b3}, \ t_{b1}] \\ & = & \max[3.6, \ 9.92] \\ & = & 9.92 \text{ mm} \end{array}$$

Available nozzle wall thickness new, t_n = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	$0.7 \cdot 1,203.265 =$	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,407.208 =	689.532 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 660.4 \cdot 10.36 \cdot 589.6 = 63,346.75 \text{ kg}_{\text{f}}$

(2) Outer fillet weld in shear $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 1,020.4 \cdot 10.66 \cdot 689.532 = 117,783.82 \text{ kg}_{\text{f}}$

(3) Nozzle wall in shear

 $\frac{\pi}{2}$ · Mean nozzle dia · $t_n \cdot S_n = \frac{\pi}{2} \cdot 649.29 \cdot 11.11 \cdot 842.286 = 95,461.47 \text{ kg}_{\text{f}}$

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 660.4 \cdot 11.71 \cdot 589.6 = 71,647.36 \text{ kg}_{\text{f}}$

(6) Upper groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 660.4 \cdot 18 \cdot 1,041.334 = 194,441.8 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

$$\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_n$$

- $(7,\!800.343 1,\!649.9322 + 2 \cdot 11.11 \cdot 0.8551 \cdot (1 \cdot 14.76 1 \cdot 12.16)) \cdot 1,\!407.208$ =
- 87,244.03 kgf =

 $W_{1-1} =$ $(A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $(534.3215 + 5,835.9392 + 91.7418 + 113.5482) \cdot 1,407.208$ =
- 92,531.71 kgf =

 $(A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$ $W_{2-2} =$

- $(534.3215 + 201.7266 + 91.7418 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208$ =
- 17,247.48 kgf =

 $(A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_n$ W₃₋₃ =

- = $(534.3215 + 201.7266 + 5,835.9392 + 91.7418 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 113.5482 + 113.54$
- = 100,969.18 kgf

Load for path 1-1 lesser of W or $W_{1-1} = 87,244.03 \text{ kg}_{f}$ Path 1-1 through (2) & (3) = 117,783.82 + 95,461.47 = 213,245.29 kgf Path 1-1 is stronger than W so it is acceptable per UG-41(b)(2).

Load for path 2-2 lesser of W or W_{2-2} = 17,247.48 kg_f Path 2-2 through (1), (5), (6) = 63,346.75 + 71,647.36 + 194,441.8 = <u>329,435.91</u> kgf Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 87,244.03 \text{ kg}_f$ Path 3-3 through (2), (5) = 117,783.82 + 71,647.36 = <u>189,431.19</u> kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

	UG-37 A		UG-45 Sui	mmary (mm)				
	The	The nozzle	passes UG-45					
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>81.713</u>	<u>81.7166</u>	<u>12.8271</u>	<u>5.2864</u>	<u>2.0173</u>	<u>58.3594</u>	<u>3.2264</u>	<u>9.92</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)								
All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength		
<u>97,477</u>	<u>92,452</u>	213,245	<u>17,168</u>	329,436	100,889	189,431		

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate				
Nozzle to inside shell fillet (Leg $_{43}$)	<u>7.78</u>	8.2 (corroded)	weld size is adequate				

Calculations for internal pressure 7.78 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[638.18, \ 319.09 + (12.7 1.59) + (18 3.24) \right]$
- = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36 \right]$
- = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$L_{I}$$
 = min $[h, 2.5 \cdot (t - C), 2.5 \cdot (t_{i} - C_{n} - C)]$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{7.7818 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 7.7818}$$

= 2.11 mm

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{7.7818 \cdot 2,251.6}{1,380 \cdot 1 - 0.6 \cdot 7.7818}$$
$$= 12.74 \text{ mm}$$

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

- $= (638.18 \cdot 12.74 \cdot 1 + 2 \cdot 11.11 \cdot 12.74 \cdot 1 \cdot (1 0.8551))/100$
- = <u>81.713</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following = <u>12.8271</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r_1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 12.74) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.74) \cdot (1 0.8551))/100$
- = 12.8271 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 12.74) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.74) \cdot (1 0.8551)) / 100$
- = 0.98 cm²

 A_2 = smaller of the following= <u>5.2864</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 2.11) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.2864 cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 2.11) \cdot 0.8551 \cdot 34.35)/100$
- = 5.2864 cm²

 A_3 = smaller of the following= 2.0173 cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 0.8551)/100$
- $= 6.003 \text{ cm}^2$
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>3.8688</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 0.8551)/100$
- = <u>2.0173</u> cm²
- $A_{41} = Leg^2 \cdot f_{r3}$
 - = (10.36² · 0.8551)/100
 - = <u>0.9174</u> cm²
- $A_{42} = Leg^2 \cdot f_{r4}$
 - = $(10.66^2 \cdot 1)/100$
 - = <u>1.1355</u> cm²
- $A_{43} = Leg^2 \cdot f_{r2}$
 - = $(11.71^2 \cdot 0.8551)/100$
 - = <u>1.1735</u> cm²

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r_4}$

- $= ((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1) / 100$
- = 58.3594 cm²

 $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 12.8271 + 5.2864 + 2.0173 + 0.9174 + 1.1355 + 1.1735 + 58.3594
- = <u>81.7166</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

 Outer fillet: t_{\min} = min [19 mm, t_e , t] = 14.76 mm

 $t_{w(\min)}$ = $0.5 \cdot t_{\min}$ = 7.38 mm

 $t_{w(actual)}$ = $0.7 \cdot \text{Leg}$ = $0.7 \cdot 10.66$ = 7.46 mm

 Lower fillet: t_{\min} = min [19 mm, t_n , t] = 11.11 mm

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{rcl} t_{a\rm UG-27} & = & \displaystyle \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + {\rm Corrosion} \\ & = & \displaystyle \frac{7.7818 \cdot 319.09}{1.180 \cdot 1 - 0.6 \cdot 7.7818} + 1.59 \\ & = & 3.7 \ {\rm mm} \\ t_a & = & \max \left[t_{a\rm UG-27}, \ t_{a\rm UG-22} \right] \\ & = & \max \left[3.7, \ 0 \right] \\ & = & 3.7 \ {\rm mm} \\ t_{b1} & = & \displaystyle \frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + {\rm Corrosion} \\ & = & \displaystyle \frac{7.7818 \cdot 2.251.6}{1.380 \cdot 1 - 0.6 \cdot 7.7818} + 3.24 \\ & = & 15.98 \ {\rm mm} \\ t_{b1} & = & \max \left[t_{a, 1}, \ t_{b\rm UG16} \right] \\ & = & \max \left[15.98 \ {\rm mm} \right] \\ t_{b1} & = & \min \left[t_{16}, \ t_{b1} \right] \\ & = & \min \left[t_{16}, \ t_{b1} \right] \\ & = & \min \left[y_{22}, \ 15.98 \right] \\ & = & 9.92 \ {\rm mm} \\ t_{\rm UG-45} & = & \max \left[t_a, \ t_b \right] \\ & = & \max \left[3.7, \ 9.92 \right] \\ & = & 9.92 \ {\rm mm} \end{array}$$

Available nozzle wall thickness new, t_n = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	$0.7 \cdot 1,203.265 =$	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,407.208 =	689.532 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 660.4 \cdot 10.36 \cdot 589.6 = 63,346.75 \text{ kg}_{\text{f}}$

(2) Outer fillet weld in shear $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 1,\!020.4 \cdot 10.66 \cdot 689.532 = 117,\!783.82 \text{ kg}_{\text{f}}$

(3) Nozzle wall in shear

 $\frac{\pi}{2}\cdot$ Mean nozzle dia
 $\cdot\,t_n\cdot S_n=\frac{\pi}{2}\cdot 649.29\cdot 11.11\cdot 842.286$ = 95,461.47 kg
f

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 660.4 \cdot 11.71 \cdot 589.6 = 71,647.36 \text{ kg}_{\text{f}}$

(6) Upper groove weld in tension

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 660.4 \cdot 18 \cdot 1,041.334 = 194,441.8 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

$$\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S$$

 $(8,\!171.2992 - 1,\!282.7071 + 2 \cdot 11.11 \cdot 0.8551 \cdot (1 \cdot 14.76 - 1 \cdot 12.74)) \cdot 1,\!407.208$ =

97,477.1 kgf =

 $W_{1-1} =$ $(A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $(528.6441 + 5,835.9392 + 91.7418 + 113.5482) \cdot 1,407.208$ =
- 92,451.82 kgf =

 $W_{2-2} =$ $(A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $(528.6441 + 201.7266 + 91.7418 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208$ =
- 17,167.59 kgf =

W₃₋₃ = $(A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- = $(528.6441 + 201.7266 + 5,835.9392 + 91.7418 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 113.5482 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 113.5482 + 113.$
- 100,889.29 kgf =

Load for path 1-1 lesser of W or W₁₋₁ = 92,451.82 kg_f Path 1-1 through (2) & (3) = 117,783.82 + 95,461.47 = 213,245.29 kgf Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or W_{2-2} = 17,167.59 kg_f Path 2-2 through (1), (5), (6) = 63,346.75 + 71,647.36 + 194,441.8 = <u>329,435.91</u> kgf Path 2-2 is stronger than W₂₋₂ so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 97,477.1 \text{ kg}_f$ Path 3-3 through (2), (5) = 117,783.82 + 71,647.36 = <u>189,431.19</u> kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (cm ²)							UG-45 Su	mmary (mm)
For P = 9.25 bar @ 21.11 °C The opening is adequately reinforced							The nozzle	passes UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
96.6649	<u>96.6652</u>	18.0864	<u>5.9922</u>	3.0407	<u>64.8</u>	<u>4.7458</u>	<u>8.33</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
111,452	103,939	252,509	<u>22,512</u>	357,745	<u>116,078</u>	229,305	

Calculations for internal pressure 9.25 bar @ 21.11 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [635, 317.5 + (12.7 0) + (18 0)]$
- = 635 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (18 0), 2.5 \cdot (12.7 0) + 18]$
- = 45 mm

Inner Normal Limit of reinforcement per UG-40

= 14 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

= $\frac{9.2455 \cdot 317.5}{1,180 \cdot 1 - 0.6 \cdot 9.2455}$
= 2.5 mm

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{9.2455 \cdot 2,250}{1,380 \cdot 1 - 0.6 \cdot 9.2455}$$

= 15.14 mm

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$\begin{aligned} f_{r1} &= \text{lesser of 1 or } \frac{S_n}{S_v} = 0.8551 \\ f_{r2} &= \text{lesser of 1 or } \frac{S_n}{S_v} = 0.8551 \\ f_{r3} &= \text{lesser of } f_{r2} \text{ or } \frac{S_p}{S_v} = 0.8551 \\ f_{r4} &= \text{lesser of 1 or } \frac{S_p}{S_v} = 1 \\ A &= d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}) \\ &= (635 \cdot 15.14 \cdot 1 + 2 \cdot 12.7 \cdot 15.14 \cdot 1 \cdot (1 - 0.8551))/100 \end{aligned}$$

 $= 96.6649 \text{ cm}^2$

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>18.0864</u> cm²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (635 \cdot (1 \cdot 18 1 \cdot 15.14) 2 \cdot 12.7 \cdot (1 \cdot 18 1 \cdot 15.14) \cdot (1 0.8551))/100$
- = 18.0864 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (2 \cdot (18 + 12.7) \cdot (1 \cdot 18 1 \cdot 15.14) 2 \cdot 12.7 \cdot (1 \cdot 18 1 \cdot 15.14) \cdot (1 0.8551)) / 100$
- = 1.6535 cm²

 A_2 = smaller of the following= <u>5.9922</u> cm²

- = $2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (12.7 2.5) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.9922 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (12.7 2.5) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.9922 cm²

 A_3 = smaller of the following= <u>3.0407</u> cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 18 \cdot 12.7 \cdot 0.8551)/100$
- $= 9.7738 \text{ cm}^2$

- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 12.7 \cdot 12.7 \cdot 0.8551)/100$
- $= 6.896 \text{ cm}^2$
- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 14 \cdot 12.7 \cdot 0.8551)/100$
- = <u>3.0407</u> cm²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = $(12.7^2 \cdot 0.8551)/100$
- = <u>1.3794</u> cm²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = $(13^2 \cdot 1)/100$
- = <u>1.6903</u> cm²

$$A_{43} = Leg^2 \cdot f_{r2}$$

- = $(14^2 \cdot 0.8551)/100$
- = <u>1.6761</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- $= ((1,020.4 635 2 \cdot 12.7) \cdot 18 \cdot 1)/100$
- $= 64.8 \text{ cm}^2$
- $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$
 - = 18.0864 + 5.9922 + 3.0407 + 1.3794 + 1.6903 + 1.6761 + 64.8
 - = <u>96.6652</u> cm²

As Area >= A the reinforcement is adequate.

UG-45 Nozzle Neck Thickness Check

= 2.5 mm

t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{9.2455 \cdot 2,250}{1,380 \cdot 1 - 0.6 \cdot 9.2455} \ + 0$
	=	15.14 mm
t_{b1}	=	$\max \left[t_{b1}, \ t_{b\mathrm{UG16}} \right]$
	=	\max [15.14, 1.5]
	=	15.14 mm
t_b	=	$\min \; [t_{b3} , \; t_{b1}]$
	=	min $[8.33, 15.14]$
	=	8.33 mm
$t_{ m UG-45}$	=	$\max\ [t_a,\ t_b]$
	=	\max [2.5, 8.33]
	=	<u>8.33</u> mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 12.7 = 11.11 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	$0.7 \cdot 1,203.265 =$	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,407.208 =	689.532 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 660.4 \cdot 12.7 \cdot 589.6 = 77,676.23 \text{ kg}_{\text{f}}$

(2) Outer fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 1,020.4 \cdot 13 \cdot 689.532 = 143,677.32 \text{ kg}_{\text{f}}$

(3) Nozzle wall in shear $\frac{\pi}{2} \cdot \text{Mean nozzle dia} \cdot t_n \cdot S_n = \frac{\pi}{2} \cdot 647.7 \cdot 12.7 \cdot 842.286 = 108,832.08 \text{ kg}_{\text{f}}$

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 660.4 \cdot 14 \cdot 589.6 = 85,627.34 \text{ kg}_f$

(6) Upper groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 660.4 \cdot 18 \cdot 1,041.334 = 194,441.8 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

- $\mathsf{W} = (A A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t F \cdot t_r)) \cdot S_v$
 - $= (9,666.4914 1,808.6415 + 2 \cdot 12.7 \cdot 0.8551 \cdot (1 \cdot 18 1 \cdot 15.14)) \cdot 1,407.208$
 - = <u>111,451.96</u> kg_f

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $= (599.2246 + 6,480 + 137.9352 + 169.0319) \cdot 1,407.208$
- = <u>103,939.12</u> kg_f

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (599.2246 + 304.0736 + 137.9352 + 167.6126 + 2 \cdot 12.7 \cdot 18 \cdot 0.8551) \cdot 1,407.208$
- = <u>22,512.49</u> kg_f

 $W_{3-3} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (599.2246 + 304.0736 + 6,480 + 137.9352 + 169.0319 + 167.6126 + 2 \cdot 12.7 \cdot 18 \cdot 0.8551) \cdot 1,407.208$
- = <u>116,078.23</u> kg_f

Load for path 1-1 lesser of W or $W_{1-1} = 103,939.12 \text{ kg}_{f}$ Path 1-1 through (2) & (3) = 143,677.32 + 108,832.08 = $252,509.39 \text{ kg}_{f}$ Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 22,512.49 \text{ kg}_{f}$ Path 2-2 through (1), (5), (6) = 77,676.23 + 85,627.34 + 194,441.8 = $357,745.36 \text{ kg}_{f}$ Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 111,451.96 \text{ kg}_f$ Path 3-3 through (2), (5) = 143,677.32 + 85,627.34 = 229,304.66 kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)							UG-45 Sui	mmary (mm)
For Pe = 0.8 bar @ 40 °C The opening is adequately reinforced						The nozzle	passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
40.3238	83.3598	<u>13.8819</u>	<u>5.8748</u>	2.0173	<u>58.3594</u>	<u>3.2264</u>	<u>4.55</u>	11.11

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Actual weld size (mm)	Status					
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate				
Nozzle to inside shell fillet (Leg $_{43}$)	<u>7.78</u>	8.2 (corroded)	weld size is adequate				

Calculations for external pressure 0.8 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [638.18, 319.09 + (12.7 1.59) + (18 3.24)]$
- = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

- L_{H} = min $[2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e]$
 - $= \min \left[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36 \right]$
 - = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_i - C_n - C)]$$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-28 trn = 1.11 mm

From UG-37(d)(1) required thickness $t_r = 12.57$ mm

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

- $= (0.5 \cdot (638.18 \cdot 12.57 \cdot 1 + 2 \cdot 11.11 \cdot 12.57 \cdot 1 \cdot (1 0.8551)))/100$
- = <u>40.3238</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>13.8819</u> cm²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 12.57) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.57) \cdot (1 0.8551))/100$
- = 13.8819 cm²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 12.57) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.57) \cdot (1 0.8551)) / 100$
- = 1.0606 cm²

 A_2 = smaller of the following= <u>5.8748</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.11) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.8748 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.11) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.8748 cm²

 A_3 = smaller of the following= 2.0173 cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 0.8551)/100$
- $= 6.003 \text{ cm}^2$
- = $5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>3.8688</u> cm²

- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 0.8551) / 100$
- $= 2.0173 \text{ cm}^2$

 $A_{41} = Leg^2 \cdot f_{r3}$

- = (10.36² · 0.8551)/100
- = <u>0.9174</u> cm²

$$A_{42} = Leg^2 \cdot f_{r4}$$

- = $(10.66^2 \cdot 1)/100$
- = <u>1.1355</u> cm²

 $A_{43} = Leg^2 \cdot f_{r2}$

- = (11.71² · 0.8551)/100
- = <u>1.1735</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- = $((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1)/100$
- = 58.3594 cm²

 $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 13.8819 + 5.8748 + 2.0173 + 0.9174 + 1.1355 + 1.1735 + 58.3594
- = <u>83.3598</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:	t_{\min}	$= \min [19 \text{ mm}, t_n, t_e] = 11.11 \text{ mm}$
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ <u>6</u> mm
	$t_{c(actual)}$	$= 0.7 \cdot \text{Leg} = 0.7 \cdot 10.36 = 7.25 \text{ mm}$
Outer fillet:	$t_{ m min}$	$=$ min [19 mm, t_e, t] $=$ 14.76 mm
	$t_{w(\min)}$	$= 0.5 \cdot t_{\min} = $ <u>7.38</u> mm
	$t_{w(\mathit{actual})}$	$= 0.7 \cdot Leg = 0.7 \cdot 10.66 = 7.46 \ \mathrm{mm}$

Lower fillet: $t_{\min} = \min [19 \text{ mm}, t_n, t] = 11.11 \text{ mm}$ $t_{w(\min)} = 0.7 \cdot t_{\min} = 7.78 \text{ mm}$ $t_{w(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 11.71 = 8.2 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 2.7 mm

$$\begin{array}{lcl} t_a & = & \max \left[t_{a\mathrm{UG-28}}, \ t_{a\mathrm{UG-22}} \right] \\ & = & \max \left[2.7, \ 0 \right] \\ & = & 2.7 \ \mathrm{mm} \\ \\ t_{\mathrm{b2}} & = & \frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \mathrm{Corrosion} \\ & = & \frac{0.8 \cdot 2,251.6}{1,380 \cdot 1 - 0.6 \cdot 0.8} + 3.24 \\ & = & 4.55 \ \mathrm{mm} \\ \\ t_{b2} & = & \max \left[t_{b2}, \ t_{b\mathrm{UG16}} \right] \\ & = & \max \left[t_{b2}, \ t_{b\mathrm{UG16}} \right] \\ & = & \max \left[t_{b2}, \ t_{b\mathrm{UG16}} \right] \\ & = & \max \left[4.55, \ 3.09 \right] \\ & = & 4.55 \ \mathrm{mm} \\ \\ t_b & = & \min \left[t_{b3}, \ t_{b2} \right] \\ & = & \min \left[9.92, \ 4.55 \right] \\ & = & 4.55 \ \mathrm{mm} \\ \\ t_{\mathrm{UG-45}} & = & \max \left[t_a, \ t_b \right] \\ & = & \max \left[2.7, \ 4.55 \right] \\ & = & 4.55 \ \mathrm{mm} \end{array}$$

Available nozzle wall thickness new, t_{n} = $~0.875 \cdot 12.7$ = 11.11 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{179.17}{660.4} = 0.2713$$
$$\frac{D_o}{t} = \frac{660.4}{1.11} = 593.9318$$

From table G: A = 0.000357

From table CS-2 Metric: $B = 363.3769 \text{ kg/cm}^2(356.35 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 356.35}{3 \cdot (660.4/1.11)} = 0.8 \text{ bar}$$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 1.11 + 1.59 = 2.7 \text{ mm}$

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)							UG-45 Sui	mmary (mm)
For Pe = 1.13 bar @ 40 °C The opening is adequately reinforced						The nozzle	passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
46.7809	<u>70.4799</u>	<u>1.0968</u>	<u>5.78</u>	<u>2.0173</u>	<u>58.3594</u>	<u>3.2264</u>	<u>5.09</u>	11.11

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (mm)	Actual weld size (mm)	Status				
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate				
Nozzle to inside shell fillet (Leg $_{43}$)	<u>7.78</u>	8.2 (corroded)	weld size is adequate				

Calculations for external pressure 1.13 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[638.18, \ 319.09 + (12.7 1.59) + (18 3.24) \right]$
- = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36]$
- = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_i - C_n - C)]$$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-28 t_{rn} = 1.27 mm

From UG-37(d)(1) required thickness t_r = 14.59 mm

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_n}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

- = $(0.5 \cdot (638.18 \cdot 14.59 \cdot 1 + 2 \cdot 11.11 \cdot 14.59 \cdot 1 \cdot (1 0.8551)))/100$
- = <u>46.7809</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>1.0968</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 14.59) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 14.59) \cdot (1 0.8551)) / 100$
- = 1.0968 cm²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r_1})$
- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 14.59) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 14.59) \cdot (1 0.8551)) / 100$
- = 0.0839 cm²

 A_2 = smaller of the following= <u>5.78</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.27) \cdot 0.8551 \cdot 34.35)/100$
- = 5.78 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.27) \cdot 0.8551 \cdot 34.35)/100$
- = 5.78 cm²

 A_3 = smaller of the following= 2.0173 cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 0.8551) / 100$
- $= 6.003 \text{ cm}^2$
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551)/100$
- = <u>3.8688</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 0.8551)/100$
- $= 2.0173 \text{ cm}^2$

 $A_{41} = Leg^2 \cdot f_{r3}$

- = $(10.36^2 \cdot 0.8551)/100$
- = <u>0.9174</u> cm²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = $(10.66^2 \cdot 1)/100$
- = <u>1.1355</u> cm²

 $A_{43} = Leg^2 \cdot f_{r2}$

- = $(11.71^2 \cdot 0.8551)/100$
- = <u>1.1735</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- $= ((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1)/100$
- = <u>58.3594</u> cm²

 $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 1.0968 + 5.78 + 2.0173 + 0.9174 + 1.1355 + 1.1735 + 58.3594
- = <u>70.4799</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:	$t_{ m min}$	$= \min [19 \text{ mm}, t_n, t_e] = 11.11 \text{ mm}$
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ <u>6</u> mm
	$t_{c(actual)}$	$= 0.7 \cdot \text{Leg} = 0.7 \cdot 10.36 = 7.25 \text{ mm}$
Outer fillet:	$t_{ m min}$	$=$ min [19 mm, t_e , t] $=$ 14.76 mm

- $t_{w(\min)} = 0.5 \cdot t_{\min} = 7.38 \,\,\,\mathrm{mm}$
- $t_{w(\textit{actual})} = 0.7 \cdot \text{Leg} = 0.7 \cdot 10.66 = 7.46 ~ \text{mm}$
- Lower fillet: t_{\min} = min [19 mm, t_n , t] = 11.11 mm $t_{w(\min)}$ = $0.7 \cdot t_{\min} = 7.78$ mm
 - $t_{w(\mathit{actual})} = 0.7 \cdot \mathrm{Leg} = 0.7 \cdot 11.71 = 8.2 ~\mathrm{mm}$

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	2.86 mm
t_a	=	$\max \left[t_{a\mathrm{UG-28}} , t_{a\mathrm{UG-22}} ight]$
	=	$\max\ [2.86, \ 0]$
	=	2.86 mm
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
-----------------	---	---
	=	$\frac{1.1343\cdot 2,251.6}{1,380\cdot 1-0.6\cdot 1.1343} + 3.24$
	=	5.09 mm
t_{b2}	=	$\max\left[t_{b2}, \ t_{b\mathrm{UG16}}\right]$
	=	$\max[5.09, 3.09]$
	=	5.09 mm
t_b	=	$\min [t_{b3}, t_{b2}]$
	=	$\min [9.92, 5.09]$
	=	5.09 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[2.86, 5.09]$
	=	<u>5.09</u> mm

Available nozzle wall thickness new, t_{n} = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{179.17}{660.4} = 0.2713$$
$$\frac{D_o}{t} = \frac{660.4}{1.27} = 518.6947$$

From table G: A = 0.000443

From table CS-2 Metric: $B = 449.979 \text{ kg/cm}^2(441.28 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 441.28}{3 \cdot (660.4/1.27)} = 1.13$$
 bar

Design thickness for external pressure $P_a = 1.13$ bar

 $t_a = t + \text{Corrosion} = 1.27 + 1.59 = \textbf{2.86} \text{ mm}$

Vacuum Ring

ASME Section VIII Division 1, 2021 Edition Metric						
	Component	Stiffening Ring				
	Material	SA-516 7	0 (II-D Metric p. 20,	ln. 45)		
	Attached To		Cylinder #2			
Impact Tested	Normalized	Fine Grain Practice	PWHT			
No	No	No	No			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
	Internal	7	40	5		
	External	0.8	40			
	Ring Pro	operties				
Ring type			Flat bar			
Description			3/4x8 Flat Bar			
Corrosion allowa	ance	0 mm				
Distance from rin	ng neutral axis to datum	3,992.65 mm				
Distance to previ	ous support		4,196.39 mm			
Distance to next	support		4,297.99 mm			
Internal ring			No			
Max depth to thic	kness ratio		12			
Ring distance to	centroid	101.6 mm				
Ring area		38.7096 cm ²				
Ring inertia		1,331.9405 cm ⁴				
	We	lds				
Weld configurati	on	Staggered intermittent				
Fillet weld leg si	ze		6.93 mm			
Length of individ	lual weld segments		76.2 mm			
Spacing between	n toes of weld segments		76.2 mm			
Vessel thickness	at weld location, new		18 mm			
Vessel corrosion	allowance at weld location	3.24 mm				
Stiffener thickne	ss at weld location	19.05 mm				
			_			

UCS-66 Material Toughness Requirements		
$t_r = rac{0.54\cdot 2,251.6}{1,380\cdot 1 - 0.6\cdot 0.54} =$	0.89 mm	
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.89 \cdot 1}{18 - 3.24} =$	0.0601	
$egin{array}{llllllllllllllllllllllllllllllllllll$	0.0157	
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C	
Material is exempt from impact testing at the Design MDMT of 5°C.		

External Pressure, (Corroded & at 40°C) UG-29(a)

$$\frac{L}{D_o} = \frac{4,297.99}{4,536} = 0.9475$$
$$\frac{D_o}{t} = \frac{4,536}{12.69} = 357.3262$$

From Table G: A = 2.1461 E-04

From Table CS-2 Metric: $B = 218.64 \text{ kg}_f/\text{cm}^2$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = rac{4 \cdot 214.41}{3 \cdot (4{,}536 \ / \ 12.69)} = 0.8$$
 bar

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s \ / \ L_s}\right) = \frac{3}{4} \cdot \left(\frac{0.8 \cdot 4,536}{12.69 + 3,870.96 \ / \ 4,247.19} + 1.02\right) = 203.969 \text{ kg}_{\rm f}/\text{cm}^2$$

From Table CS-2 Metric: A = 0.00020017 (ring, 40°C)

$$l_{s}' = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$

$$= \frac{4,536^{2} \cdot 4,247.19 \cdot (12.69 + 3,870.96 / 4,247.19) \cdot 0.00020017}{10.9} / 10000$$

$$= 2,183.53 \text{ cm}^{4}$$

I' for the composite corroded shell-ring cross section is 3,732.27 cm⁴

As $l' \ge l_s'$ a 3/4x8 Flat Bar stiffener is adequate for an external pressure of 0.8 bar.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size = min [6,18 - 1.6 - 1.64,19.05] + 0 = 6 mm

The fillet weld size of 6.93 mm is adequate per UG-30(f).

Radial pressure load, $P \cdot L_s = 0.8 \cdot \frac{4,247.19}{10} = 346.47 \text{ kg}_f/\text{cm}$

Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 0.8 \cdot 1.02 \cdot 4,247.19 \cdot \frac{4,536}{100} = 1,571.61 \text{ kg}_f$

First moment of area, $Q = 42.01 \cdot 5.23 = 219.5544$ cm³

Weld shear flow, $q = \frac{V \cdot Q}{I'} = 92.4514 \text{ kg}_f/\text{cm}$ Combined weld load, $f_w = \sqrt{346.4747^2 + 92.4514^2} = 358.6 \text{ kg}_f/\text{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 1,407.208 = 773.965 \, \mathrm{kg}_f/\mathrm{cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_w = -rac{f_w \cdot (d_{ ext{weld segment}} + d_{ ext{toe}})}{S_w \cdot d_{ ext{weld total}}} + ext{corrosion} = -rac{10 \cdot 358.6 \cdot (76.2 + 76.2)}{773.965 \cdot 152.4} + 0 = -4.63 ext{ mm}$$

The fillet weld size of 6.93 mm is adequate to resist radial pressure and shear.

Maximum Allowable External Pressure, (Corroded & at 40°C) UG-29(a)

$$\frac{L}{D_o} = \frac{4,297.99}{4,536} = 0.9475$$

$$\frac{D_o}{t} = \frac{4,536}{14.76} = 307.3173$$
From Table G: $A = 2.6186\text{E-04}$
From Table CS-2 Metric: $B = 266.6 \text{ kg}_f/\text{cm}^2$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o \ / \ t)} = rac{4 \cdot 261.45}{3 \cdot (4,536 \ / \ 14.76)} = 1.13 \ {
m bar}$$

$$B = \frac{3}{4} \cdot \left(\frac{P \cdot D_o}{t + A_s / L_s}\right) = \frac{3}{4} \cdot \left(\frac{1.13 \cdot 4,536}{14.76 + 3,870.96 / 4,247.19} \cdot 1.02\right) = 251.097 \text{ kg}_{\text{f}}/\text{cm}^2$$

From Table CS-2 Metric: A = 0.00024659 (ring, 40°C)

$$I_{s'} = \frac{D_{o}^{2} \cdot L_{s} \cdot (t + A_{s} / L_{s}) \cdot A}{10.9}$$

$$= \frac{4,536^{2} \cdot 4,247.19 \cdot (14.76 + 3,870.96 / 4,247.19) \cdot 0.00024659}{10.9} / 10000$$

$$= 3.098.1 \text{ cm}^{4}$$

I' for the composite corroded shell-ring cross section is 3,732.27 cm⁴

As $l' \ge l_s'$ a 3/4x8 Flat Bar stiffener is adequate for an external pressure of 1.13 bar.

Check the stiffener ring attachment welds per UG-30

UG-30(f) minimum weld size $= \min [6,18 - 1.6 - 1.64,19.05] + 0 = 6 mm$

The fillet weld size of 6.93 mm is adequate per UG-30(f).

Radial pressure load,
$$P \cdot L_s = 1.13 \cdot \frac{4,247.19}{10} = 491.26 \text{ kg}_f/\text{cm}$$

Radial shear load, $V = 0.01 \cdot P \cdot L_s \cdot D_o = 0.01 \cdot 1.13 \cdot 1.02 \cdot 4,247.19 \cdot \frac{4,536}{100} = 2,228.38$ kg

First moment of area, $Q = 42.01 \cdot 5.23 = 219.5544$ cm³

Weld shear flow, $q = \frac{V \cdot Q}{I'} = 131.0862 \text{ kg}_f/\text{cm}$

Combined weld load, $f_w = \sqrt{491.2643\ ^2 + 131.0862\ ^2} = 508.45\ \ \mathrm{kg}_{\,f}/\mathrm{cm}$

Allowable weld stress per UW-18(d) $S_w = 0.55 \cdot S = 0.55 \cdot 1,407.208 = 773.965 \, \mathrm{kg} \, \mathrm{_f/cm}^2$

Fillet weld size required to resist radial pressure and shear

$$t_w = \frac{f_w \cdot (d_{\text{weld segment}} + d_{\text{toe}})}{S_w \cdot d_{\text{weld total}}} + \text{corrosion} = \frac{10 \cdot 508.45 \cdot (76.2 + 76.2)}{773.965 \cdot 152.4} + 0 = 6.57 \text{ mm}$$

The fillet weld size of 6.93 mm is adequate to resist radial pressure and shear.

Cylinder #3

ASME Section VIII Division 1, 2021 Edition Metric					
Com	ponent	Cylinder			
Material		SA-51	SA-516 70 (II-D Metric p. 20, In. 45)		
Impact Tested	Normalized	Fine Grain Practice	Fine Grain Practice PWHT Maximize MD No MAWF		
No	No	No	No	No	
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)	
Int	ernal	7	40	5	
Ext	ternal	0.8	40	5	
		Static Liquid	Head		
Cor	dition	P _s (bar)	H _s (mm)	SG	
Operating		0.78	8,095	0.98	
Test horizontal		0.44 4,500 1		1	
		Dimension	IS		
Inner Diameter			4,500 mm		
Le	ngth		2,438.4 mm		
Nominal	Thickness	18 mm			
Corrosion	Inner		1.6 mm		
Concolon	Outer		1.64 mm		
		Weight and Ca	pacity		
		Wei	ght (kg)	Capacity (liters)	
Ν	lew	4,831.5		38,781.08	
Corroded		3,961.52 38,836.26			
		Radiograp	hy		
Longitu	dinal seam		Full UW-11(a) Type	e 1	
Top Circum	ferential seam	Full UW-11(a) Type 2			
Bottom Circu	mferential seam	Full UW-11(a) Type 2			

Results Summary	
Governing condition	Internal pressure
Minimum thickness per UG-16	1.5 mm + 3.24 mm = 4.74 mm
Design thickness due to internal pressure (t)	<u>15.97 mm</u>
Design thickness due to external pressure (t _e)	<u>15.94 mm</u>
Design thickness due to combined loadings + corrosion	<u>10.08 mm</u>
Maximum allowable working pressure (MAWP)	<u>8.23 bar</u>
Maximum allowable pressure (MAP)	<u>10.99 bar</u>
Maximum allowable external pressure (MAEP)	<u>1.13 bar</u>
Rated MDMT	-105 °C

UCS-66 Material Toughness Requirements		
$t_r = rac{0.78\cdot 2,251.6}{1,380\cdot 1 - 0.6\cdot 0.78} =$	1.27 mm	
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.27 \cdot 1}{18 - 3.24} =$	0.086	
$egin{array}{llllllllllllllllllllllllllllllllllll$	0.0304	
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) = -105°C		
Material is exempt from impact testing at the Design MI	DMT of 5°C.	

Design thickness, (at 40 °C) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{7.78 \cdot 2,251.6}{1,380 \cdot 1.00 - 0.60 \cdot 7.78} + 3.24 = \underline{15.97} \text{ mm}$

Maximum allowable working pressure, (at 40 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{1,380 \cdot 1.00 \cdot 14.76}{2,251.6 + 0.60 \cdot 14.76} - 0.78 = \underline{8.23} \text{ bar}$

Maximum allowable pressure, (at 21.11 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{1,\!380 \cdot 1.00 \cdot 18}{2,\!250 \!+\! 0.60 \cdot 18} = \underline{10.99} \text{ bar}$

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,297.99}{4,536} = 0.9475$$

 $\frac{D_o}{t} = \frac{4{,}536}{12.69} = 357.3338$

From table G: A = 0.000215

From table CS-2 Metric: B = 218.6278 kg/cm²(214.4 bar)

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 214.4}{3 \cdot (4,536/12.69)} = 0.8 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 12.69 + 3.24 = 15.94 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,297.99}{4,536} = 0.9475$$

$$D = 4.536$$

 $\frac{D_o}{t} = \frac{4,536}{14.76} = 307.3387$

From table G: A = 0.000262

From table CS-2 Metric: $B = 266.5812 \text{ kg/cm}^2 (261.4263 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 261.43}{3 \cdot (4,536/14.76)} = \underline{1.13} \text{ bar}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 18}{2,259}\right) \cdot \left(1 - \frac{2,259}{\infty}\right) = 0.3984\%$$

The extreme fiber elongation does not exceed 5%.

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

$$P_{v} = \frac{W}{2 \cdot \pi \cdot R_{m}} + \frac{M}{\pi \cdot R_{m}^{2}} = \frac{10 \cdot 20,034}{2 \cdot \pi \cdot 2,258.98} + 10000 \cdot 8,693.4 \frac{10000 \cdot 8}{\pi \cdot 2,258.98} = 19.5375 \text{ kg/cm}$$

$$\alpha = \frac{P_{v}}{P_{e} \cdot D_{o}} = 9.803 \cdot \frac{19.5375}{0.8 \cdot 4,536} = 0.0528$$

$$n = 7$$

$$m = \frac{1.23}{\left(\frac{L}{D_{o}}\right)^{2}} = \frac{1.23}{\left(\frac{4,297.99}{4,536}\right)^{2}} = 1.37$$

$$Ratio P_{e} = \frac{n^{2} - 1 + m + m \cdot \alpha}{n^{2} - 1 + m} = \frac{7^{2} - 1 + 1.37 + 1.37 \cdot 0.0528}{7^{2} - 1 + 1.37} = 1.0015$$

 $Ratio P_e \cdot P_e \leq MAEP$

 $(1.0015 \cdot 0.8 = 0.8) \le 1.13$

Cylinder design thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

$$\begin{split} P_v &= \frac{\left(1 + 0.14 \cdot S_{DS}\right) \cdot W}{2 \cdot \pi \cdot R_m} + \frac{M}{\pi \cdot R_m^2} = \frac{1.08 \cdot 10 \cdot 20,034}{2 \cdot \pi \cdot 2,258.98} + 10000 \cdot 112,893 \frac{\pi \cdot 2,258.98^{-2}}{\pi \cdot 2,258.98^{-2}} = 85.7199 \text{ kg/cm} \\ \alpha &= \frac{P_v}{P_e \cdot D_o} = 9.803 \cdot \frac{85.7199}{0.8 \cdot 4,536} = 0.2317 \\ n &= 7 \\ m &= \frac{1.23}{\left(\frac{L}{D_o}\right)^2} = \frac{1.23}{\left(\frac{4.297.99}{4.536}\right)^2} = 1.37 \\ Ratio P_e &= \frac{n^2 - 1 + m + m \cdot \alpha}{n^2 - 1 + m} = \frac{7^2 - 1 + 1.37 + 1.37 \cdot 0.2317}{7^2 - 1 + 1.37} = 1.0064 \\ Ratio P_e \cdot P_e < \text{MAEP} \end{split}$$

 $(1.0064 \cdot 0.8 = 0.81) \le 1.13$

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads								
Condition	Pressure P (bar)	Allowable Stress Before UG-23 Stress Increase (kg/cm ²)		Temperature Corrosio	Corrosion	osion Load	Req'd Thk Due	Req'd Thk Due to
	r (bai)	s _t	S _c	(0)	C (IIIII)			compression (mm)
Operating Hot & Corroded	7	1 407 2	805.5	40	3 24	Wind	<u>6.31</u>	<u>6.18</u>
		1,101.2	000.0		0.21	Seismic	<u>6.84</u>	<u>5.66</u>
Operating Hot & New	7	1 407 2	862	40	0	Wind	<u>6.3</u>	<u>6.16</u>
	,	1,407.2	002	40	Ū	Seismic	<u>6.84</u>	<u>5.62</u>
Hot Shut Down, Corroded	0	1,407.2	<u>805.5</u>	40	3.24	Wind	<u>0.04</u>	<u>0.24</u>
The onder Down, Conoded	0					Seismic	<u>0.5</u>	<u>1.06</u>
Het Shut Down, Now	0	1,407.2	<u>862</u>	40	0	Wind	<u>0.05</u>	<u>0.25</u>
The shut bown, new	0					Seismic	<u>0.5</u>	<u>1.04</u>
Empty Corrodod	0	1 407 2	905 5	21.11	2.24	Wind	<u>0.04</u>	<u>0.24</u>
	0	1,407.2	005.5		5.24	Seismic	<u>0.06</u>	<u>0.37</u>
Empty New	0	1,407.2	862	21.11	0	Wind	<u>0.05</u>	<u>0.25</u>
	U					Seismic	<u>0.06</u>	<u>0.4</u>
Vacuum	0.0	1,407.2	<u>805.5</u>	40	2.24	Wind	<u>1.18</u>	<u>1.38</u>
	-0.8				3.24	Seismic	<u>0.36</u>	<u>2.2</u>
Hot Shut Down, Corroded, Weight & Eccentric Moments Only	0	1,407.2	<u>805.5</u>	40	3.24	Weight	<u>0.14</u>	<u>0.21</u>

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC},$ (table CS-2 Metric)

$$A = {0.125 \over R_o/t} = {0.125 \over 2,268/14.76} = 0.000813$$

 $B=805.5~{
m kg/cm}^2$

$$S = {1,407.2 \over 1.00} = 1,407.2 ~{
m kg/cm}^2$$

 $S_{cHC} = \min(B,S) = \frac{805.5 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Hot and New- S_{cHN}, (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,268/18} = 0.000992$$

$$B = 862 \text{ kg/cm}^2$$

$$S = {1,407.2 \over 1.00} = 1,407.2 \, {
m kg/cm}^2$$

 $S_{cHN} = \min(B,S) = \frac{862 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Cold and New- S_{cCN} , (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,268/18} = 0.000992$$

 $B=862~~{
m kg/cm}^2$

$$S = rac{1,407.2}{1.00} = 1,407.2 \, {
m kg/cm}^2$$

 $S_{cCN} = \min(B,S) = 862 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and Corroded- $S_{cCC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,268/14.76} = 0.000813$$

$$B = 805.5$$
 kg/cm²

$$S = \frac{1{,}407.2}{1.00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{c\mathbb{C}} = \min(B,S) = 805.5 \text{ kg/cm}^2$

Allowable Compressive Stress, Vacuum and Corroded- $S_{cVC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,\!268/14.76} = 0.000813$$

 $B\,=805.5\,$ kg/cm 2

$$S = \frac{1{,}407.2}{1.00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{cVC} = \min(B,S) = \frac{805.5 \text{ kg/cm}^2}{2}$

Operating, Hot & Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.251.6}{2 \cdot 1.380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.34 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 8.693.4}{\pi \cdot 2.258.98^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{w} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.60 \cdot 20.034}{2 \cdot \pi \cdot 2.258.98 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.07 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 6.34 + 0.04 - (0.07) \\ &= 6.31 \text{ mm} \\ t_{w c} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{20.034}{2 \cdot \pi \cdot 2.258.98 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.11 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0.04 + (0.11) - (6.34)| \\ &= 6.18 \text{ mm} \\ \\ \textbf{Maximum allowable working pressure, Longitudinal Stress} \end{split}$$

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (14.76 - 0.04 + (0.07))}{2,251.6 - 0.40 \cdot (14.76 - 0.04 + (0.07))}$$
$$= 16.35 \text{ bar}$$

Operating, Hot & New, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1.380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{h}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 8,714.1 \frac{1}{\pi \cdot 2.259^{2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{w} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot 23.322.5}{2 \cdot \pi \cdot 2.259 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 6.33 + 0.04 - (0.08) \\ &= 6.3 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{23.322.5}{2 \cdot \pi \cdot 2.259 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.13 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.04 + (0.13) - (6.33)| \\ &= 6.16 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (18 - 0.04 + (0.08))}{2,250 - 0.40 \cdot (18 - 0.04 + (0.08))}$$
$$= 19.97 \text{ bar}$$

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 8,693.4 \frac{1}{\pi \cdot 2,258.98^{-2} \cdot 789.9 \cdot 1.00} \cdot 98066.5 \\ &= 0.07 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (Weight) \\ &= 0.60 \cdot 20,034 \frac{1}{2 \cdot \pi \cdot 2,258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.11 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.07 - (0.11)| \\ &= 0.04 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{*}} \cdot \text{MetricFactor} & (Weight) \\ &= \frac{20,034}{2 \cdot \pi \cdot 2,258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.18 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.07 + (0.18) - (0) \\ &= 0.24 \text{ mm} \\ \\ \text{Hot Shut Down, New, Wind, Bottom Seam} \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 8.714.1 \frac{1}{\pi \cdot 2.259^{-2} \cdot 845.38 \cdot 1.00} \cdot 98066.5 \\ &= 0.06 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 23.322.5 \frac{1}{2 \cdot \pi \cdot 2.259 \cdot 845.38 \cdot 1.00} \cdot 98.0665 \\ &= 0.11 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.06 - (0.11)| \\ &= 0.05 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{23.322.5}{2 \cdot \pi \cdot 2.259 \cdot 845.38 \cdot 1.00} \cdot 98.0665 \\ &= 0.19 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.06 + (0.19) - (0) \\ &= 0.25 \text{ mm} \\ \\ \text{Empty, Corroded, Wind, Bottom Seam} \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 8.714.1 \frac{1}{\pi \cdot 2.259^{-2} \cdot 845.38 \cdot 1.00} \cdot 98066.5 \\ &= 0.06 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 23.322.5 \frac{1}{2 \cdot \pi \cdot 2.259 \cdot 845.38 \cdot 1.00} \cdot 98.0665 \\ &= 0.11 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.06 - (0.11)| \\ &= 0.05 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{23.322.5}{2 \cdot \pi \cdot 2.259 \cdot 845.38 \cdot 1.00} \cdot 98.0665 \\ &= 0.19 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.06 + (0.19) - (0) \\ &= 0.25 \text{ mm} \\ \\ \text{Vacuum, Wind, Bottom Seam} \end{split}$$

$$t_{p} = \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|}$$
 (Pressure)

$$= \frac{-0.8 \cdot 2.251.6}{2 \cdot 789.9 \cdot 1.00 + 0.40 \cdot 0.8|}$$

$$= -1.14 \text{ mm}$$

$$t_{m} = \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor}$$
 (bending)

$$= 8,693.4 \frac{1}{\pi \cdot 2.258.98^{-2} \cdot 789.9 \cdot 1.00} \cdot 98066.5$$

$$= 0.07 \text{ mm}$$

$$t_{w} = 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor}$$
 (Weight)

$$= 0.60 \cdot 20,034 \frac{1}{2 \cdot \pi \cdot 2.258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665$$

$$= 0.11 \text{ mm}$$

$$t_{t} = |t_{p} + t_{m} - t_{w}|$$
 (total, net compressive)

$$= |-1.14 + 0.07 - (0.11)|$$

$$= 1.18 \text{ mm}$$

$$t_{w} c = \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor}$$
 (Weight)

$$= \frac{20,034}{2 \cdot \pi \cdot 2.258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665$$

$$= 0.18 \text{ mm}$$

$$t_{c} = t_{mc} + t_{wc} - t_{pc}$$
 (total required, compressive)

$$= 0.07 + (0.18) - (-1.14)$$

$$= 1.38 \text{ mm}$$

$$Maximum Allowable External Pressure, Longitudinal Stress$$

$2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})$

$$P = \frac{1}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 789.9 \cdot 1.00 \cdot (14.76 - 0.07 - 0.18)}{2,251.6 - 0.40 \cdot (14.76 - 0.07 - 0.18)}$$
$$= 10.21 \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

Operating, Hot & Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2,251.6}{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.34 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 112,893 \frac{112,893}{\pi \cdot 2,258.98} \frac{2}{2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.56 \text{ mm} \\ t_{w} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.52 \cdot 20,034}{2 \cdot \pi \cdot 2,258.98 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.06 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 6.34 + 0.56 - (0.06) \\ &= 6.84 \text{ mm} \\ t_{w} c &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{1.08 \cdot 20,034}{2 \cdot \pi \cdot 2,258.98 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.12 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.56 + (0.12) - (6.34)| \\ &= 5.66 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (14.76 - 0.56 + (0.06))}{2,251.6 - 0.40 \cdot (14.76 - 0.56 + (0.06))}$$
$$= 15.77 \text{ bar}$$

Operating, Hot & New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1.380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 115, 651 \frac{1}{\pi \cdot 2.259} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0.57 \text{ mm} \\ t_{w} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.52 \cdot 23, 322.5}{2 \cdot \pi \cdot 2.259 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.07 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 6.33 + 0.57 - (0.07) \\ &= 6.84 \text{ mm} \\ t_{wc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{1.08 \cdot 23, 322.5}{2 \cdot \pi \cdot 2.259 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.14 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= 0.57 + (0.14) - (6.33)| \\ &= 5.62 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (18 - 0.57 + (0.07))}{2,250 - 0.40 \cdot (18 - 0.57 + (0.07))}$$
$$= 19.38 \text{ bar}$$

Hot Shut Down, Corroded, Seismic, Bottom Seam

tp	=	0 mm	(Pressure)		
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)		
	=	$112,893 {\pi \cdot 2,\!258.98^{-2} \cdot 1,\!380 \cdot 1.00 \cdot 0.90} \cdot 98066.5$			
	=	0.56 mm			
t _w	=	$\frac{\left(0.6-0.14\cdot S_{DS}\right)\cdot W}{2\cdot \pi\cdot R_m\cdot S_t\cdot K_s\cdot E_c} \cdot \text{MetricFactor}$	(Weight)		
	=	$\frac{0.52\cdot 20,034}{2\cdot \pi\cdot 2,\!258.98\cdot 1,\!380\cdot 1.00\cdot 0.90}\cdot 98.0665$			
	=	0.06 mm			
tt	=	$t_p + t_m - t_w$	(total required, tensile)		
	=	0+0.56-(0.06)			
	=	<u>0.5 mm</u>			
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)		
	=	$112,893 \frac{1}{\pi \cdot 2,258.98^{-2} \cdot 789.9 \cdot 1.00} \cdot 98066.5$			
	=	0.87 mm			
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)		
	=	$\frac{1.08\cdot 20,034}{2\cdot \pi\cdot 2,258.98\cdot 789.9\cdot 1.00}\cdot 98.0665$			
	=	0.19 mm			
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)		
	=	0.87+(0.19)-(0)			
	=	<u>1.06 mm</u>	て		
Hot Shut Down, New, Seismic, Bottom Seam					

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$115,651 {\pi \cdot 2,\!259^{-2} \cdot 1,\!380 \cdot 1.00 \cdot 0.90} \cdot 98066.5$	
	=	0.57 mm	
tw	=	$\frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 23,322.5}{2\cdot \pi\cdot 2,259\cdot 1,380\cdot 1.00\cdot 0.90}\cdot 98.0665$	
	=	0.07 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.57-(0.07)	
	=	<u>0.5 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$115,651 \frac{1}{\pi \cdot 2,259^{-2} \cdot 845.38 \cdot 1.00} \cdot 98066.5$	
	=	0.84 mm	
t _{w c}	=	$\frac{\left(1+0.14 \cdot S_{DS}\right) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08 \cdot 23,322.5}{2 \cdot \pi \cdot 2,259 \cdot 845.38 \cdot 1.00} \cdot 98.0665$	
	=	0.21 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.84+(0.21) - (0)	
	=	<u>1.04 mm</u>	
<u>Emp</u>	ty,	Corroded, Seismic, Bottom Seam	

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$23,610.6 \frac{1}{\pi \cdot 2,258.98^{-2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5$	
	=	0.12 mm	
tw	=	$\frac{\left(0.6-0.14\cdot S_{DS}\right)\cdot W}{2\cdot \pi\cdot R_m\cdot S_t\cdot K_s\cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 20,034}{2\cdot \pi\cdot 2,\!258.98\cdot 1,\!380\cdot 1.00\cdot 0.90}\cdot 98.0665$	
	=	0.06 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.12-(0.06)	
	=	<u>0.06 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$23,610.6 \underbrace{\qquad}_{\pi\ \cdot\ 2,258.98} \ ^2\ \cdot\ 789.9\ \cdot\ 1.00} \ \cdot\ 98066.5$	
	=	0.18 mm	
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08 \cdot 20,034}{2 \cdot \pi \cdot 2,258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665$	
	=	0.19 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.18+(0.19)-(0)	
	=	<u>0.37 mm</u>	て
<u>Emp</u>	ty,	New, Seismic, Bottom Seam	

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$26,518.8 \underbrace{\frac{1}{\pi \cdot 2,259\ ^2 \cdot 1,380 \cdot 1.00 \cdot 0.90}}_{ \cdot 98066.5}$	
	=	0.13 mm	
tw	=	$\frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 23,322.5}{2\cdot \pi\cdot 2,259\cdot 1,380\cdot 1.00\cdot 0.90}\cdot 98.0665$	
	=	0.07 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0 + 0.13 - (0.07)	
	=	<u>0.06 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$26,518.8 \underbrace{\qquad}_{\pi \ \cdot \ 2,259 \ ^2 \ \cdot \ 845.38 \ \cdot \ 1.00} \ \cdot \ 98066.5$	
	=	0.19 mm	
t _{w c}	=	$\frac{\left(1+0.14 \cdot S_{DS}\right) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08 \cdot 23,322.5}{2 \cdot \pi \cdot 2,259 \cdot 845.38 \cdot 1.00} \cdot 98.0665$	
	=	0.21 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.19+(0.21)-(0)	
	=	<u>0.4 mm</u>	
<u>Vacı</u>	iur	n, Seismic, Bottom Seam	

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 789.9 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.14 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 112,893 \frac{1}{\pi \cdot 2.258.98} \frac{2}{\cdot 789.9 \cdot 1.00} \cdot 98066.5 \\ &= 0.87 \text{ mm} \\ t_{W} &= (0.6 - 0.14 \cdot S_{DS}) \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} (Weight) \\ &= 0.52 \cdot 20,034 \frac{2}{2 \cdot \pi \cdot 2.258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.09 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (total, net compressive) \\ &= |-1.14 + 0.87 - (0.09)| \\ &= 0.36 \text{ mm} \\ t_{wcc} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{1.08 \cdot 20,034}{2 \cdot \pi \cdot 2.258.98 \cdot 789.9 \cdot 1.00} \cdot 98.0665 \\ &= 0.19 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0.87 + (0.19) - (-1.14) \\ &= 2.2 \text{ mm} \end{split}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 789.9 \cdot 1.00 \cdot (14.76 - 0.87 - 0.19)}{2,251.6 - 0.40 \cdot (14.76 - 0.87 - 0.19)}$$

= <u>9.63</u> bar

Nozzle #1 (N1)

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.47-2017 Flange			
Description	NPS 26 Class 150 WN A105 Series A		
Bolt Material	SA-193 B7 Bolt <= 64 (II-D Metric p. 410, In. 32)		
Blind included	Yes		
Rated MDMT	-48°C		
Liquid static head	0.61 bar		
MAWP rating	19.53 bar @ 40°C		
MAP rating	19.6 bar @ 21.11°C		
Hydrotest rating	30 bar @ 21.11°C		
PWHT performed	No		
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	No		
Impact Tested	No		
Circumferential joint radiography Full UW-11(a) Type 1			
Bore diameter, B (specified by purchaser) 647.7 mm			
Notes			
Flange and blind rated MDMT per UCS-66(b)(1)(b) = -48°C (Coincident ratio = 0.3954) Bolts rated MDMT per Fig UCS-66 note (c) = -48°C			

UCS-66 Material Toughness Requirements Nozzle					
$t_r = rac{7.78\cdot 319.09}{1,180\cdot 1 - 0.6\cdot 7.78} =$	2.11 mm				
Stress ratio $= \frac{t_r \cdot E^*}{t_n - c} = \frac{2.11 \cdot 1}{11.11 - 1.59} =$	0.2218				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C				
Material is exempt from impact testing at the Design ME	DMT of 5°C.				

UCS-66 Material Toughness Requirements Pad					
Governing thickness, t _g =	18 mm				
MDMT =	-29°C				
Material is exempt from impact testing per UG-20(f)	at the Design MDMT of 5°C				

Reinforcement Calculations for Internal Pressure

UG-37 Area Calculation Summary (cm ²)						UG-45 Sui	mmary (mm)	
For P = 7.64 bar @ 40 °C The opening is adequately reinforced					The nozzle	passes UG-45		
A required	A A A ₁ A ₂ A ₃ A ₅ A welds					t _{req}	t _{min}	
80.2419	<u>83.1849</u>	14.2767	<u>5.309</u>	2.0172	<u>58.3561</u>	<u>3.2258</u>	<u>9.92</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
<u>93,428</u>	<u>92,478</u>	213,232	17,198	329,427	100,915	189,416	

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate			
Nozzle to inside shell fillet (Leg $_{43}$)	<u>7.78</u>	8.2 (corroded)	weld size is adequate			

Calculations for internal pressure 7.64 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

- L_{R} = max $[d, R_{n} + (t_{n} C_{n}) + (t C)]$
 - = max [638.18, 319.09 + (12.7 1.59) + (18 3.24)]
 - = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

- = min $[2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e]$
- $= \min \left[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36 \right]$
- = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, \ 2.5 \cdot (t - C), \ 2.5 \cdot (t_i - C_n - C)]$$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{7.6422 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 7.6422}$$

= 2.08 mm

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

= $\frac{7.6422 \cdot 2,251.6}{1,380 \cdot 1 - 0.6 \cdot 7.6422}$
= 12.51 mm

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r2}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r_1})$$

- $= (638.18 \cdot 12.51 \cdot 1 + 2 \cdot 11.11 \cdot 12.51 \cdot 1 \cdot (1 0.8551))/100$
- = <u>80.2419</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>14.2767</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 12.51) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.51) \cdot (1 0.8551)) / 100$
- = 14.2767 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 12.51) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.51) \cdot (1 0.8551)) / 100$
- = 1.091 cm²

 A_2 = smaller of the following= <u>5.309</u> cm²

$$= 2 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot L_{pr}$$

 $= (2 \cdot (11.11 - 2.08) \cdot 0.8551 \cdot 34.35) / 100$

$$=$$
 5.309 cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 2.08) \cdot 0.8551 \cdot 34.35)/100$
- = 5.309 cm²

 A_3 = smaller of the following= 2.0172 cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 0.8551)/100$
- $= 6.0024 \text{ cm}^2$
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>3.8686</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 0.8551)/100$
- = <u>2.0172</u> cm²
- $A_{41} = Leg^2 \cdot f_{r3}$
 - = (10.36² · 0.8551)/100
 - = <u>0.9168</u> cm²
- $A_{42} = Leg^2 \cdot f_{r4}$
 - = $(10.66^2 \cdot 1)/100$
 - = <u>1.1355</u> cm²
- $A_{43} = Leg^2 \cdot f_{r2}$
 - $= (11.71^2 \cdot 0.8551)/100$
 - = <u>1.1735</u> cm²

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r_4}$

- $= ((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1) / 100$
- = 58.3561 cm²
- $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$
 - = 14.2767 + 5.309 + 2.0172 + 0.9168 + 1.1355 + 1.1735 + 58.3561
 - = <u>83.1849</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Outer fillet: t_{\min} = min [19 mm, t_e , t] = 14.76 mm $t_{w(\min)}$ = $0.5 \cdot t_{\min} = \overline{7.38}$ mm $t_{w(actual)}$ = $0.7 \cdot \text{Leg} = 0.7 \cdot 10.66 = 7.46$ mm

Lower fillet: $t_{\min} = \min [19 \text{ mm}, t_n, t] = 11.11 \text{ mm}$ $t_{w(\min)} = 0.7 \cdot t_{\min} = 7.78 \text{ mm}$ $t_{w(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 11.71 = 8.2 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{7.6422 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 7.6422} + 1.59$
	=	3.66 mm
t_a	=	$\max \left[t_{a\mathrm{UG-27}}, \ t_{a\mathrm{UG-22}} \right]$
	=	$\max[3.66, 0]$
	=	3.66 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{7.6422 \cdot 2,251.6}{1,380 \cdot 1 - 0.6 \cdot 7.6422} + 3.24$
	=	15.75 mm
t_{b1}	=	$\max \left[t_{b1}, \ t_{b\mathrm{UG16}} \right]$
	=	$\max[15.75, 3.09]$
	=	15.75 mm
t_b	=	$\min \; [t_{b3}, \; t_{b1}]$
	=	\min [9.92, 15.75]
	=	9.92 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[3.66, 9.92]$
	=	<u>9.92</u> mm

Available nozzle wall thickness new, t_n = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	0.7.1,203.265 =	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,407.208 =	689.532 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 660.4 \cdot 10.36 \cdot 589.6 = 63,339.41 \text{ kg}_{\text{f}}$

(2) Outer fillet weld in shear $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 1,020.4 \cdot 10.66 \cdot 689.532 = 117,770.56 \text{ kg}_{\text{f}}$

(3) Nozzle wall in shear

 $\frac{\pi}{2}\cdot$ Mean nozzle dia
 $\cdot\,t_n\cdot S_n=\frac{\pi}{2}\cdot 649.29\cdot 11.11\cdot 842.286$ = 95,461.47 kg
f

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 660.4 \cdot 11.71 \cdot 589.6 = 71,645.62 \text{ kg}_f$

(6) Upper groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 660.4 \cdot 18 \cdot 1,041.334 = 194,441.8 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

$$\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S_n$$

- $(8,024.1874 1,427.6746 + 2 \cdot 11.11 \cdot 0.8551 \cdot (1 \cdot 14.76 1 \cdot 12.51)) \cdot 1,407.208$ =
- 93,428 kgf =

 $W_{1-1} =$ $(A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $(530.9022 + 5,835.6121 + 91.6772 + 113.5482) \cdot 1,407.208$ =
- <u>92,478.08</u> kg_f =

 $W_{2-2} =$ $(A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $(530.9022 + 201.7191 + 91.6772 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208$ =
- 17,198.08 kgf =

 $(A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$ W₃₋₃ =

- = $(530.9022 + 201.7191 + 5,835.6121 + 91.6772 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 110.113 \cdot 110.$
- 100,915.17 kg_f =

Load for path 1-1 lesser of W or W₁₋₁ = 92,478.08 kg_f Path 1-1 through (2) & (3) = 117,770.56 + 95,461.47 = 213,232.03 kgf Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or W_{2-2} = 17,198.08 kg_f Path 2-2 through (1), (5), (6) = 63,339.41 + 71,645.62 + 194,441.8 = <u>329,426.83</u> kgf Path 2-2 is stronger than W₂₋₂ so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 93,428 \text{ kg}_f$ Path 3-3 through (2), (5) = 117,770.56 + 71,645.62 = <u>189,416.18</u> kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (cm ²)						UG-45 Sui	mmary (mm)	
For P = 7.78 bar @ 40 °C The opening is adequately reinforced					The nozzle	passes UG-45		
A required	A available	A ₁	A ₂	Α ₃	A ₅	A welds	t _{req}	t _{min}
<u>81.7016</u>	<u>81.7171</u>	<u>12.8316</u>	<u>5.2864</u>	<u>2.0172</u>	<u>58.3561</u>	<u>3.2258</u>	<u>9.92</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)							
A	All failure paths are stronger than the applicable weld loads						
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
<u>97,455</u>	<u>92,446</u>	213,232	<u>17,166</u>	329,427	100,883	189,416	

UW-16 Weld Sizing Summary						
Weld description	Required weld size (mm)	Actual weld size (mm)	Status			
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate			
Nozzle to inside shell fillet (Leg ₄₃)	<u>7.78</u>	8.2 (corroded)	weld size is adequate			

Calculations for internal pressure 7.78 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[638.18, \ 319.09 + (12.7 1.59) + (18 3.24) \right]$
- = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36 \right]$
- = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$L_{I}$$
 = min $[h, 2.5 \cdot (t - C), 2.5 \cdot (t_{i} - C_{n} - C)]$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{7.7808 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 7.7808}$$

= 2.11 mm

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{7.7808 \cdot 2,251.6}{1,380 \cdot 1 - 0.6 \cdot 7.7808}$$
$$= 12.74 \text{ mm}$$

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

- $= (638.18 \cdot 12.74 \cdot 1 + 2 \cdot 11.11 \cdot 12.74 \cdot 1 \cdot (1 0.8551))/100$
- = <u>81.7016</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following = <u>12.8316</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r_1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 12.74) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.74) \cdot (1 0.8551))/100$
- = 12.8316 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 12.74) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.74) \cdot (1 0.8551)) / 100$
- = 0.9806 cm²

 A_2 = smaller of the following= <u>5.2864</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 2.11) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.2864 cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 2.11) \cdot 0.8551 \cdot 34.35)/100$
- = 5.2864 cm²

 A_3 = smaller of the following= 2.0172 cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 0.8551)/100$
- $= 6.0024 \text{ cm}^2$
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>3.8686</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 0.8551)/100$
- = <u>2.0172</u> cm²
- $A_{41} = Leg^2 \cdot f_{r3}$
 - = $(10.36^{2} \cdot 0.8551)/100$
 - = <u>0.9168</u> cm²
- $A_{42} = Leg^2 \cdot f_{r4}$
 - = $(10.66^2 \cdot 1)/100$
 - = <u>1.1355</u> cm²
- $A_{43} = Leg^2 \cdot f_{r2}$
 - = $(11.71^2 \cdot 0.8551)/100$
 - = <u>1.1735</u> cm²

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r_4}$

- $= ((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1)/100$
- = 58.3561 cm²
- $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$
 - = 12.8316 + 5.2864 + 2.0172 + 0.9168 + 1.1355 + 1.1735 + 58.3561
 - = <u>81.7171</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Outer fillet: t_{\min} =min [19 mm, t_e , t]=14.76 mm $t_{w(\min)}$ = $0.5 \cdot t_{\min}$ =7.38 mm $t_{w(actual)}$ = $0.7 \cdot \text{Leg}$ = $0.7 \cdot 10.66$ =7.46 mmLower fillet: t_{\min} =min [19 mm, t_n , t]=11.11 mm

 $egin{array}{lll} t_{w({
m min})} &= 0.7 \cdot t_{{
m min}} = {7.78 \over 2.78} {
m mm} \ t_{w(actual)} &= 0.7 \cdot {
m Leg} = 0.7 \cdot 11.71 = 8.2 {
m mm} \end{array}$

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{rcl} t_{aUG-27} & = & \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion} \\ & = & \frac{7.7808 \cdot 319.09}{1,180 \cdot 1 - 0.6 \cdot 7.7808} + 1.59 \\ & = & 3.7 \text{ mm} \\ t_a & = & \max[t_{aUG-27}, t_{aUG-22}] \\ & = & \max[3.7, 0] \\ & = & 3.7 \text{ mm} \\ t_{b1} & = & \frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion} \\ & = & \frac{7.7808 \cdot 2.251.6}{1,380 \cdot 1 - 0.6 \cdot 7.7808} + 3.24 \\ & = & 15.98 \text{ mm} \\ t_{b1} & = & \max[t_{b1}, t_{b1G16}] \\ & = & \max[t_{b3}, t_{b1}] \\ & = & \max[15.98, 3.09] \\ & = & 15.98 \text{ mm} \\ t_b & = & \min[t_{b3}, t_{b1}] \\ & = & \min[9.92, 15.98] \\ & = & 9.92 \text{ mm} \\ t_{UG-45} & = & \max[t_a, t_b] \\ & = & \max[3.7, 9.92] \\ & = & 9.92 \text{ mm} \end{array}$$

Available nozzle wall thickness new, t_n = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)
Nozzle wall in shear:	$0.7 \cdot 1,203.265 =$	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,407.208 =	689.532 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 660.4 \cdot 10.36 \cdot 589.6 = 63,339.41 \text{ kg}_{\text{f}}$

(2) Outer fillet weld in shear $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 1,\!020.4 \cdot 10.66 \cdot 689.532 = 117,\!770.56 \text{ kg}_{\text{f}}$

(3) Nozzle wall in shear

 $\frac{\pi}{2}\cdot$ Mean nozzle dia
 $\cdot\,t_n\cdot S_n=\frac{\pi}{2}\cdot 649.29\cdot 11.11\cdot 842.286$ = 95,461.47 kg
f

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 660.4 \cdot 11.71 \cdot 589.6 = 71,645.62 \text{ kg}_{\text{f}}$

(6) Upper groove weld in tension

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 660.4 \cdot 18 \cdot 1,041.334 = 194,441.8 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

$$\mathsf{W} = (A - A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t - F \cdot t_r)) \cdot S$$

 $(8,\!170.1588 - 1,\!283.1587 + 2 \cdot 11.11 \cdot 0.8551 \cdot (1 \cdot 14.76 - 1 \cdot 12.74)) \cdot 1,\!407.208$ =

97,454.9 kgf =

 $W_{1-1} =$ $(A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $(528.6441 + 5,835.6121 + 91.6772 + 113.5482) \cdot 1,407.208$ =
- <u>92,446.3</u> kg_f =

 $W_{2-2} =$ $(A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $(528.6441 + 201.7191 + 91.6772 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208$ =
- 17,166.3 kgf =

W₃₋₃ = $(A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- = $(528.6441 + 201.7191 + 5,835.6121 + 91.6772 + 113.5482 + 117.3546 + 2 \cdot 11.11 \cdot 14.76 \cdot 0.8551) \cdot 1,407.208 + 110.113 \cdot 110.$
- 100,883.39 kgf =

Load for path 1-1 lesser of W or W_{1-1} = 92,446.3 kg_f Path 1-1 through (2) & (3) = 117,770.56 + 95,461.47 = 213,232.03 kgf Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or W_{2-2} = 17,166.3 kg_f Path 2-2 through (1), (5), (6) = 63,339.41 + 71,645.62 + 194,441.8 = <u>329,426.83</u> kgf Path 2-2 is stronger than W₂₋₂ so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 97,454.9 \text{ kg}_f$ Path 3-3 through (2), (5) = 117,770.56 + 71,645.62 = <u>189,416.18</u> kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

U	UG-37 Area Calculation Summary (cm ²) UG-45 Summary (mm)							
For P = 9.25 bar @ 21.11 °C The opening is adequately reinforced The						The nozzle	passes UG-45	
A required	A available	A ₁	A ₂	Α ₃	A ₅	A welds	t _{req}	t _{min}
<u>96.6649</u>	<u>96.6652</u>	<u>18.0864</u>	<u>5.9922</u>	<u>3.0407</u>	<u>64.8</u>	<u>4.7458</u>	<u>8.33</u>	11.11

UG-41 Weld Failure Path Analysis Summary (kg _f)						
All failure paths are stronger than the applicable weld loads						
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength
<u>111,452</u>	<u>103,939</u>	252,509	<u>22,512</u>	<u>357,745</u>	<u>116,078</u>	<u>229,305</u>

Calculations for internal pressure 9.25 bar @ 21.11 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [635, 317.5 + (12.7 0) + (18 0)]$
- = 635 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (18 0), \ 2.5 \cdot (12.7 0) + 18 \right]$
- = 45 mm

Inner Normal Limit of reinforcement per UG-40

= 14 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$

= $\frac{9.2455 \cdot 317.5}{1,180 \cdot 1 - 0.6 \cdot 9.2455}$
= 2.5 mm

Required thickness t_r from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{9.2455 \cdot 2,250}{1,380 \cdot 1 - 0.6 \cdot 9.2455}$$

= 15.14 mm

Area required per UG-37(c)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$\begin{aligned} f_{r1} &= \text{lesser of 1 or } \frac{S_n}{S_v} = 0.8551 \\ f_{r2} &= \text{lesser of 1 or } \frac{S_n}{S_v} = 0.8551 \\ f_{r3} &= \text{lesser of } f_{r2} \text{ or } \frac{S_p}{S_v} = 0.8551 \\ f_{r4} &= \text{lesser of 1 or } \frac{S_p}{S_v} = 1 \\ A &= d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}) \\ &= (635 \cdot 15.14 \cdot 1 + 2 \cdot 12.7 \cdot 15.14 \cdot 1 \cdot (1 - 0.8551))/100 \end{aligned}$$

$$= 96.6649 \text{ cm}^2$$

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>18.0864</u> cm²

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (635 \cdot (1 \cdot 18 1 \cdot 15.14) 2 \cdot 12.7 \cdot (1 \cdot 18 1 \cdot 15.14) \cdot (1 0.8551))/100$
- = 18.0864 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (2 \cdot (18 + 12.7) \cdot (1 \cdot 18 1 \cdot 15.14) 2 \cdot 12.7 \cdot (1 \cdot 18 1 \cdot 15.14) \cdot (1 0.8551)) / 100$
- = 1.6535 cm²

 A_2 = smaller of the following= <u>5.9922</u> cm²

- = $2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (12.7 2.5) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.9922 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (12.7 2.5) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.9922 cm²

 A_3 = smaller of the following= <u>3.0407</u> cm²

- = $5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 18 \cdot 12.7 \cdot 0.8551)/100$
- $= 9.7738 \text{ cm}^2$

- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 12.7 \cdot 12.7 \cdot 0.8551)/100$
- $= 6.896 \text{ cm}^2$
- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 14 \cdot 12.7 \cdot 0.8551)/100$
- = <u>3.0407</u> cm²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = $(12.7^2 \cdot 0.8551)/100$
- = <u>1.3794</u> cm²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = $(13^2 \cdot 1)/100$
- = <u>1.6903</u> cm²
- $A_{43} = Leg^2 \cdot f_{r2}$
 - = $(14^2 \cdot 0.8551)/100$
 - = <u>1.6761</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- $= ((1,020.4 635 2 \cdot 12.7) \cdot 18 \cdot 1)/100$
- $= 64.8 \text{ cm}^2$
- $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$
 - = 18.0864 + 5.9922 + 3.0407 + 1.3794 + 1.6903 + 1.6761 + 64.8
 - = <u>96.6652</u> cm²

As Area >= A the reinforcement is adequate.

UG-45 Nozzle Neck Thickness Check

= 2.5 mm

t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{9.2455 \cdot 2,250}{1,380 \cdot 1 - 0.6 \cdot 9.2455} \ + 0$
	=	15.14 mm
t_{b1}	=	$\max \left[t_{b1}, \ t_{b\mathrm{UG16}} \right]$
	=	\max [15.14, 1.5]
	=	15.14 mm
t_b	=	$\min \; [t_{b3} , \; t_{b1}]$
	=	min $[8.33, 15.14]$
	=	8.33 mm
$t_{ m UG-45}$	=	$\max\ [t_a,\ t_b]$
	=	\max [2.5, 8.33]
	=	<u>8.33</u> mm

Available nozzle wall thickness new, $t_n = 0.875 \cdot 12.7 = 11.11 \text{ mm}$

The nozzle neck thickness is adequate.

Allowable stresses in joints UG-45 and UW-15(c)

Nozzle wall in shear:	$0.7 \cdot 1,203.265 =$	842.286 kg _f /cm ²
Inner fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²
Outer fillet weld in shear:	0.49.1,407.208 =	689.532 kg _f /cm ²
Upper groove weld in tension:	0.74.1,407.208 =	1,041.334 kg _f /cm ²
Lower fillet weld in shear:	0.49.1,203.265 =	589.6 kg _f /cm ²

Strength of welded joints:

(1) Inner fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_i = \frac{\pi}{2} \cdot 660.4 \cdot 12.7 \cdot 589.6 = 77,676.23 \text{ kg}_{\text{f}}$

(2) Outer fillet weld in shear

 $\frac{\pi}{2} \cdot \text{Pad OD} \cdot \text{Leg} \cdot S_o = \frac{\pi}{2} \cdot 1,020.4 \cdot 13 \cdot 689.532 = 143,677.32 \text{ kg}_{\text{f}}$

(3) Nozzle wall in shear $\frac{\pi}{2} \cdot \text{Mean nozzle dia} \cdot t_n \cdot S_n = \frac{\pi}{2} \cdot 647.7 \cdot 12.7 \cdot 842.286 = 108,832.08 \text{ kg}_{\text{f}}$

(5) Lower fillet weld in shear $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot \text{Leg} \cdot S_l = \frac{\pi}{2} \cdot 660.4 \cdot 14 \cdot 589.6 = 85,627.34 \text{ kg}_f$

(6) Upper groove weld in tension $\frac{\pi}{2} \cdot \text{Nozzle OD} \cdot t_w \cdot S_g = \frac{\pi}{2} \cdot 660.4 \cdot 18 \cdot 1,041.334 = 194,441.8 \text{ kg}_{\text{f}}$

Loading on welds per UG-41(b)(1)

- $\mathsf{W} = (A A_1 + 2 \cdot t_n \cdot f_{r1} \cdot (E_1 \cdot t F \cdot t_r)) \cdot S_v$
 - $= (9,666.4914 1,808.6415 + 2 \cdot 12.7 \cdot 0.8551 \cdot (1 \cdot 18 1 \cdot 15.14)) \cdot 1,407.208$
 - = <u>111,451.96</u> kg_f

 $W_{1-1} = (A_2 + A_5 + A_{41} + A_{42}) \cdot S_v$

- $= (599.2246 + 6,480 + 137.9352 + 169.0319) \cdot 1,407.208$
- = <u>103,939.12</u> kg_f

 $W_{2-2} = (A_2 + A_3 + A_{41} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (599.2246 + 304.0736 + 137.9352 + 167.6126 + 2 \cdot 12.7 \cdot 18 \cdot 0.8551) \cdot 1,407.208$
- = <u>22,512.49</u> kg_f

 $W_{3-3} = (A_2 + A_3 + A_5 + A_{41} + A_{42} + A_{43} + 2 \cdot t_n \cdot t \cdot f_{r1}) \cdot S_v$

- $= (599.2246 + 304.0736 + 6,480 + 137.9352 + 169.0319 + 167.6126 + 2 \cdot 12.7 \cdot 18 \cdot 0.8551) \cdot 1,407.208$
- = <u>116,078.23</u> kg_f

Load for path 1-1 lesser of W or $W_{1-1} = 103,939.12 \text{ kg}_{f}$ Path 1-1 through (2) & (3) = 143,677.32 + 108,832.08 = $252,509.39 \text{ kg}_{f}$ Path 1-1 is stronger than W_{1-1} so it is acceptable per UG-41(b)(1).

Load for path 2-2 lesser of W or $W_{2-2} = 22,512.49 \text{ kg}_{f}$ Path 2-2 through (1), (5), (6) = 77,676.23 + 85,627.34 + 194,441.8 = $357,745.36 \text{ kg}_{f}$ Path 2-2 is stronger than W_{2-2} so it is acceptable per UG-41(b)(1).

Load for path 3-3 lesser of W or $W_{3-3} = 111,451.96 \text{ kg}_f$ Path 3-3 through (2), (5) = 143,677.32 + 85,627.34 = 229,304.66 kg_f Path 3-3 is stronger than W so it is acceptable per UG-41(b)(2).

Reinforcement Calculations for External Pressure

	UG-37 Area Calculation Summary (cm ²)							mmary (mm)
	For Pe = 0.8 bar @ 40 °C The opening is adequately reinforced						passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
40.7091	82.5862	<u>13.1122</u>	<u>5.8748</u>	<u>2.0172</u>	<u>58.3561</u>	<u>3.2258</u>	<u>4.55</u>	11.11

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate		
Nozzle to inside shell fillet (Leg ₄₃)	<u>7.78</u>	8.2 (corroded)	weld size is adequate		

Calculations for external pressure 0.8 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [638.18, 319.09 + (12.7 1.59) + (18 3.24)]$
- = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

- L_{H} = min $[2.5 \cdot (t C), 2.5 \cdot (t_n C_n) + t_e]$
 - $= \min \left[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36 \right]$
 - = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min \left[h, \ 2.5 \cdot (t - C), \ 2.5 \cdot (t_i - C_n - C) \right]$$

- = min $[12.4, 2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59 1.6)]$
- = 12.4 mm

Nozzle required thickness per UG-28 trn = 1.11 mm

From UG-37(d)(1) required thickness $t_r = 12.69 \text{ mm}$

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_v}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r_1}))$$

- $= (0.5 \cdot (638.18 \cdot 12.69 \cdot 1 + 2 \cdot 11.11 \cdot 12.69 \cdot 1 \cdot (1 0.8551)))/100$
- = <u>40.7091</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>13.1122</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 12.69) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.69) \cdot (1 0.8551))/100$
- = 13.1122 cm²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1-f_{r1})$
- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 12.69) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 12.69) \cdot (1 0.8551)) / 100$
- = 1.0019 cm²

 A_2 = smaller of the following= <u>5.8748</u> cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.11) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.8748 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.11) \cdot 0.8551 \cdot 34.35) / 100$
- = 5.8748 cm²

 A_3 = smaller of the following= 2.0172 cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 0.8551)/100$
- $= 6.0024 \text{ cm}^2$
- = $5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551) / 100$
- = <u>3.8686</u> cm²

- = $2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 0.8551)/100$
- = <u>2.0172</u> cm²

 $A_{41} = Leg^2 \cdot f_{r3}$

- = (10.36² · 0.8551)/100
- = <u>0.9168</u> cm²

$$A_{42} = Leg^2 \cdot f_{r4}$$

- = $(10.66^2 \cdot 1)/100$
- = <u>1.1355</u> cm²

 $A_{43} = Leg^2 \cdot f_{r2}$

- = (11.71² · 0.8551)/100
- = <u>1.1735</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- = $((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1)/100$
- = <u>58.3561</u> cm²

 $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 13.1122 + 5.8748 + 2.0172 + 0.9168 + 1.1355 + 1.1735 + 58.3561
- = <u>82.5862</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:	$t_{ m min}$	$= \min [19 \text{ mm}, t_n, t_e] = 11.11 \text{ mm}$
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ <u>6</u> mm
	$t_{c(actual)}$	$= 0.7 \cdot \text{Leg} = 0.7 \cdot 10.36 = 7.25 \text{ mm}$
Outer fillet:	$t_{ m min}$	$=$ min [19 mm, t_e, t] $=$ 14.76 mm
	$t_{w(\min)}$	$= 0.5 \cdot t_{\min} = \overline{7.38}$ mm
	$t_{w(\mathit{actual})}$	$= 0.7 \cdot Leg = 0.7 \cdot 10.66 = 7.46 \ \mathrm{mm}$

Lower fillet: $t_{\min} = \min [19 \text{ mm}, t_n, t] = 11.11 \text{ mm}$ $t_{w(\min)} = 0.7 \cdot t_{\min} = \underline{7.78} \text{ mm}$ $t_{w(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 11.71 = 8.2 \text{ mm}$

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 2.7 mm

$$\begin{array}{rcl} t_a & = & \max \left[t_{a \mathrm{UG-28}}, \ t_{a \mathrm{UG-22}} \right] \\ & = & \max \left[2.7, \ 0 \right] \\ & = & 2.7 \ \mathrm{mm} \\ \\ t_{\mathrm{b2}} & = & \frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \mathrm{Corrosion} \\ & = & \frac{0.8 \cdot 2.251.6}{1.380 \cdot 1 - 0.6 \cdot 0.8} + 3.24 \\ & = & 4.55 \ \mathrm{mm} \\ \\ t_{b2} & = & \max \left[t_{b2}, \ t_{b \mathrm{UG16}} \right] \\ & = & \max \left[t_{b2}, \ t_{b \mathrm{UG16}} \right] \\ & = & \max \left[4.55, \ 3.09 \right] \\ & = & 4.55 \ \mathrm{mm} \\ \\ t_b & = & \min \left[t_{b3}, \ t_{b2} \right] \\ & = & \min \left[9.92, \ 4.55 \right] \\ & = & 4.55 \ \mathrm{mm} \\ \\ t_{\mathrm{UG-45}} & = & \max \left[t_a, \ t_b \right] \\ & = & \max \left[2.7, \ 4.55 \right] \\ & = & 4.55 \ \mathrm{mm} \end{array}$$

Available nozzle wall thickness new, t_{n} = $~0.875 \cdot 12.7$ = 11.11 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{179.17}{660.4} = 0.2713$$
$$\frac{D_o}{t} = \frac{660.4}{1.11} = 593.9318$$

From table G: A = 0.000357

From table CS-2 Metric: $B = 363.3769 \text{ kg/cm}^2(356.35 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 356.35}{3 \cdot (660.4/1.11)} = 0.8 \text{ bar}$$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 1.11 + 1.59 = 2.7 \text{ mm}$

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (cm ²)						UG-45 Su	mmary (mm)	
For Pe = 1.13 bar @ 40 °C The opening is adequately reinforced					The nozzle	passes UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
47.3315	<u>69.3791</u>		<u>5.78</u>	2.0172	<u>58.3561</u>	3.2258	<u>5.09</u>	11.11

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld size (mm)	Actual weld size (mm)	Status		
Nozzle to pad fillet (Leg ₄₁)	<u>6</u>	7.25 (corroded)	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	<u>7.38</u>	7.46 (corroded)	weld size is adequate		
Nozzle to inside shell fillet (Leg $_{43}$)	<u>7.78</u>	8.2 (corroded)	weld size is adequate		

Calculations for external pressure 1.13 bar @ 40 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[638.18, \ 319.09 + (12.7 1.59) + (18 3.24) \right]$
- = 638.18 mm

Outer Normal Limit of reinforcement per UG-40

 L_{H} = min $[2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$

- = min $[2.5 \cdot (18 3.24), 2.5 \cdot (12.7 1.59) + 16.36]$
- = 36.9 mm

Inner Normal Limit of reinforcement per UG-40

$$\mathsf{L}_{\mathsf{I}} = \min [h, 2.5 \cdot (t - C), 2.5 \cdot (t_i - C_n - C)]$$

- $= \min \left[12.4, \ 2.5 \cdot (18 3.24), \ 2.5 \cdot (12.7 1.59 1.6) \right]$
- = 12.4 mm

Nozzle required thickness per UG-28 t_{rn} = 1.27 mm

From UG-37(d)(1) required thickness t_r = 14.76 mm

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1,203.265, S_v = 1,407.208, S_p = 1,407.208 kg_f/cm²

$$f_{r1}$$
 = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 0.8551

$$f_{r3}$$
 = lesser of f_{r2} or $\frac{S_p}{S_v}$ = 0.8551

 f_{r4} = lesser of 1 or $\frac{S_p}{S_n}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r_1}))$$

- = $(0.5 \cdot (638.18 \cdot 14.76 \cdot 1 + 2 \cdot 11.11 \cdot 14.76 \cdot 1 \cdot (1 0.8551)))/100$
- = <u>47.3315</u> cm²

Area available from FIG. UG-37.1

 $A_1 = \text{larger of the following} = 0 \text{ cm}^2$

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (638.18 \cdot (1 \cdot 14.76 1 \cdot 14.76) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 14.76) \cdot (1 0.8551)) / 100$
- $= 0 \text{ cm}^2$
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r_1})$
- $= (2 \cdot (14.76 + 11.11) \cdot (1 \cdot 14.76 1 \cdot 14.76) 2 \cdot 11.11 \cdot (1 \cdot 14.76 1 \cdot 14.76) \cdot (1 0.8551)) / 100$
- $= 0 \text{ cm}^2$

 A_2 = smaller of the following= 5.78 cm²

- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.27) \cdot 0.8551 \cdot 34.35)/100$
- = 5.78 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot L_{pr}$
- $= (2 \cdot (11.11 1.27) \cdot 0.8551 \cdot 34.35)/100$
- = 5.78 cm²

 A_3 = smaller of the following= 2.0172 cm²

- $= 5 \cdot t \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 14.76 \cdot 9.51 \cdot 0.8551) / 100$
- $= 6.0024 \text{ cm}^2$
- $= 5 \cdot t_i \cdot t_i \cdot f_{r2}$
- $= (5 \cdot 9.51 \cdot 9.51 \cdot 0.8551)/100$
- = <u>3.8686</u> cm²
- $= 2 \cdot h \cdot t_i \cdot f_{r2}$
- $= (2 \cdot 12.4 \cdot 9.51 \cdot 0.8551) / 100$
- $= 2.0172 \text{ cm}^2$

 $A_{41} = Leg^2 \cdot f_{r3}$

- = $(10.36^2 \cdot 0.8551)/100$
- = <u>0.9168</u> cm²

 $A_{42} = Leg^2 \cdot f_{r4}$

- = $(10.66^2 \cdot 1)/100$
- = <u>1.1355</u> cm²

 $A_{43} = Leg^2 \cdot f_{r2}$

- = $(11.71^2 \cdot 0.8551)/100$
- = <u>1.1735</u> cm²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- $= ((1,017.12 638.18 2 \cdot 11.11) \cdot 16.36 \cdot 1)/100$
- = <u>58.3561</u> cm²

 $Area = A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 0 + 5.78 + 2.0172 + 0.9168 + 1.1355 + 1.1735 + 58.3561
- = <u>69.3791</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(d) Weld Check

Inner fillet:	$t_{ m min}$	$=$ min [19 mm, t_n , t_e] $=$ 11.11 mm
	$t_{c(\min)}$	$=$ min [6 mm, 0.7 $\cdot t_{\min}$] $=$ <u>6</u> mm
	$t_{c(actual)}$	$= 0.7 \cdot \text{Leg} = 0.7 \cdot 10.36 = 7.25 \text{ mm}$
Outer fillet:	$t_{ m min}$	$=$ min [19 mm, t_e , t] $=$ 14.76 mm

- $t_{w(\min)} = 0.5 \cdot t_{\min} = 7.38 \,\,\,\mathrm{mm}$
- $t_{w(\textit{actual})} = 0.7 \cdot \text{Leg} = 0.7 \cdot 10.66 = 7.46 ~ \text{mm}$
- Lower fillet: t_{\min} = min [19 mm, t_n , t] = 11.11 mm $t_{w(\min)}$ = $0.7 \cdot t_{\min} = \overline{7.78}$ mm
 - $t_{w(actual)} = 0.7 \cdot {
 m Leg} = 0.7 \cdot 11.71 = 8.2 ~{
 m mm}$

UG-45 Nozzle Neck Thickness Check

$t_{a { m UG-}28}$	=	2.86 mm
t_a	=	$\max \left[t_{a\mathrm{UG-28}} , t_{a\mathrm{UG-22}} \right]$
	=	$\max\ [2.86, \ 0]$
	=	2.86 mm

t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{1.1342\cdot 2,\!251.6}{1,\!380\cdot 1-0.6\cdot 1.1342} + 3.24$
	=	5.09 mm
t_{b2}	=	$\max\left[t_{b2}, \ t_{b\mathrm{UG16}}\right]$
	=	$\max[5.09, 3.09]$
	=	5.09 mm
t_b	=	$\min [t_{b3}, t_{b2}]$
	=	$\min [9.92, 5.09]$
	=	5.09 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[2.86, 5.09]$
	=	<u>5.09</u> mm

Available nozzle wall thickness new, t_{n} = $~0.875{\cdot}12.7~$ = 11.11 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{179.17}{660.4} = 0.2713$$
$$\frac{D_o}{t} = \frac{660.4}{1.27} = 518.7274$$

From table G: A = 0.000443

From table CS-2 Metric: B = 449.9414 kg/cm²(441.24 bar)

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 441.24}{3 \cdot (660.4/1.27)} = 1.13 \;\; {
m bar}$

Design thickness for external pressure $P_a = 1.13$ bar

 $t_a = t + \text{Corrosion} = 1.27 + 1.59 = \textbf{2.86} \text{ mm}$

Shipping Saddle

ASME Section VIII Division 1, 2021	Edition Metric
Saddle Material	Carbon steel
Saddle Construction	Centered web
Saddle Allowable Stress, S _s	1,406 kg _f /cm ²
Saddle Yield Stress, S _y	2,672 kg _f /cm ²
Dimensions	
Shipping saddle angular position	0°
Right saddle distance to datum	1,087.23 mm
Tangent To Tangent Length, L	7,985.3 mm
Saddle separation, L _s	5,709.24 mm
Vessel Radius, R	2,268 mm
Tangent Distance Left, A _l	1,138.03 mm
Tangent Distance Right, A _r	1,138.03 mm
Saddle Height, H _s	2,580.86 mm
Saddle Contact Angle, θ	120°
Web Plate Thickness, t _s	15.88 mm
Base Plate Length, E	3,970.87 mm
Base Plate Width, F	254 mm
Base Plate Thickness, t _b	15.88 mm
Number of Stiffening Ribs, n	9
Largest Stiffening Rib Spacing, d _i	491.6 mm
Stiffening Rib Thickness, t _w	12.7 mm
Saddle Width, b	228.6 mm
Weight	
	Empty, New
Weight on Left Saddle	14,544.44 kg
Weight on Right Saddle	14,245.52 kg
Weight of Saddle Pair	1,184.78 kg

Shipping Load Cases						
	Road					
κ _L	1					
κ _τ	0.5					
κ _V	1.5					
Include Vertical Coincident with Horizontal	~					
Include Wind	×					
Wind Pressure, bar	×					
Check Saddle Plates	×					

Notes

(1) Saddle calculations are based on the method presented in "Stresses in Large Cylindrical Pressure Vessels on Two Saddle Supports" by L.P. Zick.

Stress Summary										
Load Condition	Saddlo	Bending + pressure between saddles (kg _f /cm ²)				Bending + pressure at the saddle (kg _f /cm ²)				
	Condition		S ₁ (+)	allow (+)	S ₁ (-)	allow (-)	S ₂ (+)	allow (+)	S ₂ (-)	allow (-)
Road	Bood Empty & Now	Right Saddle	15 012	2 164 042	15 012	962 047	<u>2.972</u>	2,404.491	<u>2.972</u>	862.047
Road Empty & New	Left Saddle	10.012	2,104.042	15.012	002.047	<u>2.9</u>	2,276.007	<u>2.9</u>	862.047	

Stress Summary										
Load Condition	Saddle	Tangential shear (kg _f /cm ²)		Circumferential stress (kg _f /cm ²)		Stress over saddle (kg _f /cm ²)		Splitting (kg _f /cm ²)		
	Condition		S ₃	allow	S ₄ (horns)	allow (+/-)	S ₅	allow	S ₆	allow
Bood	Dood Empty & Now	Right Saddle	<u>101.852</u>	1,923.593	<u>-806.939</u>	2,404.491	<u>620.41</u>	2,404.491	<u>209.896</u>	2,404.498
Road Emply & New	Left Saddle	<u>104.041</u>	1,820.805	<u>-819.34</u>	2,276.007	<u>629.944</u>	2,276.007	<u>213.122</u>	2,404.498	

	Sac	Idle reactions due to shipping						
Shipping load	longitudinal rea	action, Q _I						
Shipping load transverse reaction, Qt								
Shipping load	vertical reactio	n, Q _v						
		Equations						
$Q_v = rac{K_V \cdot W}{L_v}$	s L _{COG}							
If consider vertic	cal coincident,	$V_v = Q_v$						
$Q_t = rac{K_T \cdot W}{R_o \cdot \mathrm{Sin}(t)}$	$rac{V \cdot H_s}{ heta \ / \ 2)} + V_v$							
$Q_l = rac{K_L \cdot W \cdot V}{L_s}$	$H_s + V_v$							
$Q = W + \max$	$[Q_t, Q_l]$							
		Road						
	Right Saddle	$V_v = Q_v = rac{1.5 \cdot 28,789.96 \cdot 2,824.98}{5,709.24}$	21,368.26 kg _f					
		$Q_t = rac{0.5 \cdot 14,245.52 \cdot 2,580.86}{2,268 \cdot \mathrm{Sin}(120 \ / \ 2)} + 21,368.26$	30,727.47 kg _f					
		$Q_l = rac{1\cdot 28,789.96\cdot 2,580.86}{5,709.24} + 21,368.26$	34,382.76 kg _f					
		$Q = 14,\!245.52 + \max[30,\!727.47,\!34,\!382.76]$	48,628.28 kg _f					
Empty & New	Left Saddle	$V_v = Q_v = rac{1.5 \cdot 28,789.96 \cdot 2,884.26}{5,709.24}$	21,816.68 kg _f					
		$Q_t = rac{0.5 \cdot 14{,}544{.}44 \cdot 2{,}580{.}86}{2{,}268 \cdot { m Sin}(120 \ / \ 2)} + 21{,}816{.}68$	31,372.28 kg _f					
		$Q_l = rac{1\cdot 28,789.96\cdot 2,580.86}{5,709.24} + 21,816.68$	34,831.18 kg _f					
		$Q = 14{,}544{.}44 + \max{[31{,}372{.}28{,}34{,}831{.}18]}$	49,375.62 kg _f					

Load Case 1: Road, Empty & New

Longitudinal stress between saddles (Road, Empty & New, left saddle loading and geometry govern)

 $S_1 = \pm \frac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = \frac{300 \cdot 0.4395 \cdot 49,375.62 \cdot (7,985.3 \ / \ 12)}{\pi \cdot 2,259^{\ 2} \cdot 18} = 15.012 \ \mathrm{kg}_f/\mathrm{cm}^{\ 2}$

 $\begin{array}{ll} \text{Tensile stress is acceptable} \left(\ \leq 0.9 \cdot S_y \cdot E = 2{,}164.042 \ \ \text{kg}_{\,f}/\text{cm}^{\,2} \right) \\ \text{Compressive stress is acceptable} \left(\ \leq S_c = 862.047 \ \ \text{kg}_{\,f}/\text{cm}^{\,2} \right) \end{array}$

Longitudinal stress at the right saddle (Road, Empty & New)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 785.66}{3} + 7,985.3 + \frac{2 \cdot 788.08}{3} = 9,034.46 \text{ mm}$$

$$w = \frac{W_t \cdot (1 + K_V)}{L_e} = \frac{28,789.96 \cdot (1 + 1.5) \cdot 10}{9,034.46} = 79.67 \text{ kg}_f/\text{cm}$$

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= \frac{79.67}{10000} \cdot \left(\frac{2 \cdot 788.08 \cdot 1,138.03}{3} + \frac{1,138.03}{2} - \frac{2,268^2 - 788.08^2}{4}\right) \\ &= 914.4kg_f - m \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{\,}'}{\pi \cdot R^2 \cdot t} = rac{914.4 \cdot 1e5 \cdot 9.3799}{\pi \cdot 2,\!259^{\,\,2} \cdot 18} = 2.972 \; \; \mathrm{kg}_f{/\mathrm{cm}}^2$$

Tensile stress is acceptable $\left(\le 0.9 \cdot S_y = 2,404.491 \text{ kg}_f/\text{cm}^2 \right)$ Compressive stress is acceptable $\left(\le S_c = 862.047 \text{ kg}_f/\text{cm}^2 \right)$

Tangential shear stress in the shell (right saddle, Road, Empty & New)

$$Q_{shear} = Q - w \cdot \left(A_r + \frac{2 \cdot H_r}{3}\right) = 48,628.28 - 7.97 \cdot \left(1,138.03 + \frac{2 \cdot 788.08}{3}\right) = 35,376.32 \text{ kg}_f$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 100 \cdot 35,376.32}{2,259 \cdot 18} = \frac{101.852}{101.852} \text{ kg}_f/\text{cm}^2$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot (0.9 \cdot S_y) = 1,923.593 \text{ kg}_f/\text{cm}^2$)

Circumferential stress at the right saddle horns (Road, Empty & New)

$$S_{4} = \frac{-Q}{4 \cdot t \cdot (b + 1.56 \cdot \sqrt{R_{o} \cdot t})} - \frac{12 \cdot K_{3} \cdot Q \cdot R}{L \cdot t^{2}}$$
$$= \frac{-100 \cdot 48,628.28}{4 \cdot 18 \cdot (228.6 + 1.56 \cdot \sqrt{2,268 \cdot 18})} - \frac{12 \cdot 0.0134 \cdot 100 \cdot 48,628.28 \cdot 2,259}{7,985.3 \cdot 18^{2}}$$
$$= \frac{-806.939}{-806.939} \text{ kg}_{f}/\text{cm}^{2}$$

Circumferential stress at saddle horns is acceptable $\left(\le 0.9 \cdot S_y = 2,404.491 \; \log_f/\mathrm{cm}^2
ight)$

Ring compression in shell over right saddle (Road, Empty & New)

$$S_5 = rac{K_5 \cdot Q}{t \cdot ig(t_s + 1.56 \cdot \sqrt{R_o \cdot t_c}ig)}$$

 $100 \cdot 0.7603 \cdot 48,628.28$

$$18 \cdot \left(15.88 + 1.56 \cdot \sqrt{2,268 \cdot 18}\right)$$

$$=$$
 620.41 kg _f/cm²

Ring compression in shell is acceptable $\left(\le 0.9 \cdot S_y = 2,404.491 \, \mathrm{kg}_f / \mathrm{cm}^2
ight)$

Saddle splitting load (right, Road, Empty & New)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 29.6985 \cdot 1.5875 + 0 \cdot 0$$
 = 47.1464 cm²

$$S_6 = rac{K_8 \cdot Q}{A_e} = rac{100 \cdot 0.2035 \cdot 48,628.28}{4,714.6432} = rac{209.896}{209.896} \, \mathrm{kg}_f / \mathrm{cm}^2$$

Stress in saddle is acceptable $\left(\ \leq 0.9 \cdot S_y \ = 2{,}404.498 \ \ \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}
ight)$

Longitudinal stress at the left saddle (Road, Empty & New)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 785.66}{3} + 7,985.3 + \frac{2 \cdot 788.08}{3} = 9,034.46 \text{ mm}$$

$$w = \frac{W_t \cdot (1+K_V)}{L_e} = \frac{28,\!789.96 \cdot (1+1.5) \cdot 10}{9,\!034.46} = 79.67 \ \ \mathrm{kg}_{\,f}/\mathrm{cm}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= \frac{79.67}{10000} \cdot \left(\frac{2 \cdot 785.66 \cdot 1,138.03}{3} + \frac{1,138.03}{2} - \frac{2,268 \cdot 2 - 785.66 \cdot 2}{4}\right) \\ &= 892.1 kg_f - m \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{\,}'}{\pi \cdot R^2 \cdot t} = rac{892.1 \cdot 1e5 \cdot 9.3799}{\pi \cdot 2,259 \, ^2 \cdot 18} = 2.9 \ \ \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$$

Tensile stress is acceptable $\Big(\le 0.9 \cdot S_y = 2,276.007 \; \; \mathrm{kg}_f / \mathrm{cm}^2 \Big)$

Compressive stress is acceptable $\left({\ \leq S_c = 862.047} {\ \ {
m kg}_f}/{
m cm}^2
ight)$

Tangential shear stress in the shell (left saddle, Road, Empty & New)

$$Q_{shear} = Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 49,375.62 - 7.97 \cdot \left(1,138.03 + \frac{2 \cdot 785.66}{3}\right) = 36,136.53 \text{ kg}_f$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 100 \cdot 36,136.53}{2,259 \cdot 18} = \underline{104.041} \text{ kg}_f/\text{cm}^2$$

Tangential shear stress is acceptable ($~\leq 0.8 \cdot (0.9 \cdot S_y) = 1,820.805~~{
m kg}_f/{
m cm}^2$)

Circumferential stress at the left saddle horns (Road, Empty & New)

$$S_{4} = \frac{-Q}{4 \cdot t \cdot (b + 1.56 \cdot \sqrt{R_{o} \cdot t})} - \frac{12 \cdot K_{3} \cdot Q \cdot R}{L \cdot t^{2}}$$
$$= \frac{-100 \cdot 49,375.62}{4 \cdot 18 \cdot (228.6 + 1.56 \cdot \sqrt{2,268 \cdot 18})} - \frac{12 \cdot 0.0134 \cdot 100 \cdot 49,375.62 \cdot 2,259}{7,985.3 \cdot 18^{2}}$$

$$=$$
 -819.34 kg _f/cm²

Circumferential stress at saddle horns is acceptable $\left(\ \leq 0.9 \cdot S_y = 2,\!276.007 \ \ \mathrm{kg}_f/\mathrm{cm}^2
ight)$

Ring compression in shell over left saddle (Road, Empty & New)

$$S_{5} = \frac{K_{5} \cdot Q}{t \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{100 \cdot 0.7603 \cdot 49,375.62}{18 \cdot (15.88 + 1.56 \cdot \sqrt{2,268 \cdot 18})}$$
$$= \frac{629.944}{100} \text{ kg}_{f}/\text{cm}^{2}$$

Ring compression in shell is acceptable $\left(\ \leq 0.9 \cdot S_y = 2,276.007 \ \ \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}
ight)$

Saddle splitting load (left, Road, Empty & New)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 29.6985 \cdot 1.5875 + 0 \cdot 0 = 47.1464 \text{ cm}^2$$

$$S_6 = rac{K_8 \cdot Q}{A_e} = rac{100 \cdot 0.2035 \cdot 49,375.62}{4,714.6432} = rac{213.122}{4.714.6432} \, \mathrm{kg}_f / \mathrm{cm}^2$$

Stress in saddle is acceptable $\Big(\le 0.9 \cdot S_y = 2,404.498 \ \ \mathrm{kg}_f/\mathrm{cm}^2 \Big)$

Cylinder #4

	ASME Section	h VIII Division 1	, 2021 Edition Metr	ic				
Com	ponent	Cylinder						
Ма	terial	SA-51	6 70 (II-D Metric p. :	20, ln. 45)				
Impact Tested	Normalized	Fine Grain Practice	Fine Grain Practice PWHT Maximize MDMT/ No MAWP					
No	No	No	No	No				
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)				
Int	ernal	7	40	5				
Ext	ternal	0.8	40	5				
Static Liquid Head								
Cor	dition	P _s (bar)	H _s (mm)	SG				
Operating		0.83	0.98					
Test horizontal		0.44	1					
		Dimension	S					
Inner I	Diameter							
Le	ngth	568.5 mm						
Nominal	Thickness	17 mm						
Corrosion	Inner	1.6 mm						
Contrasion	Outer	1.64 mm						
		Weight and Ca	pacity					
		Weig	ght (kg)	Capacity (liters)				
Ν	lew	1,0)74.26	9,041.6				
Corroded		869.51 9,054.47						
		Radiograp	hy					
Longitu	dinal seam	Full UW-11(a) Type 1						
Top Circum	ferential seam	Full UW-11(a) Type 2						
D 11 01		Full UW-11(a) Type 2						

Results Summary								
Governing condition	Internal pressure							
Minimum thickness per UG-16	1.5 mm + 3.24 mm = 4.74 mm							
Design thickness due to internal pressure (t)	<u>16.06 mm</u>							
Design thickness due to external pressure (t _e)	<u>15.93 mm</u>							
Design thickness due to combined loadings + corrosion	<u>9.72 mm</u>							
Maximum allowable working pressure (MAWP)	<u>7.57 bar</u>							
Maximum allowable pressure (MAP)	<u>10.38 bar</u>							
Maximum allowable external pressure (MAEP)	<u>0.97 bar</u>							
Rated MDMT	-105 °C							

UCS-66 Material Toughness Requirements						
$t_r = rac{0.83\cdot 2,251.6}{1,380\cdot 1 - 0.6\cdot 0.83} =$	1.36 mm					
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.36 \cdot 1}{17 - 3.24} =$	0.0987					
$egin{aligned} { m Stressratio} longitud \in al = rac{79.262\cdot 1}{1,407.208\cdot 1} = \ \end{aligned}$	0.0563					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C					
Material is exempt from impact testing at the Design MI	DMT of 5°C.					

Design thickness, (at 40 °C) UG-27(c)(1)

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{7.83 \cdot 2,251.6}{1,380 \cdot 1.00 - 0.60 \cdot 7.83} + 3.24 = \underline{16.06} \text{ mm}$

Maximum allowable working pressure, (at 40 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{1,380 \cdot 1.00 \cdot 13.76}{2,251.6 + 0.60 \cdot 13.76} - 0.83 = \underline{7.57} \text{ bar}$

Maximum allowable pressure, (at 21.11 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{1,\!380 \cdot 1.00 \cdot 17}{2,\!250 + 0.60 \cdot 17} = \underline{10.38}$ bar

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,\!297.99}{4,\!534} = 0.9479$$

 $\frac{D_o}{t} = \frac{4{,}534}{12.69} = 357.2703$

From table G: A = 0.000215

From table CS-2 Metric: B = 218.5894 kg/cm²(214.36 bar)

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 214.36}{3 \cdot (4,534/12.69)} = 0.8 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 12.69 + 3.24 = 15.93 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,297.99}{4,534} = 0.9479$$

 $\frac{D_o}{t} = \frac{4{,}534}{13.76} = 329.5058$

From table G: A = 0.000241

From table CS-2 Metric: $B = 245.2108 \text{ kg/cm}^2 (240.4692 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 240.47}{3 \cdot (4,534/13.76)} = \underline{0.97} \text{ bar}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 17}{2,258.5}\right) \cdot \left(1 - \frac{2,258.5}{\infty}\right) = 0.3764\%$$

The extreme fiber elongation does not exceed 5%.

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

$$\begin{split} P_v &= \frac{W}{2 \cdot \pi \cdot R_m} + \frac{M}{\pi \cdot R_m^2} = \frac{10 \cdot 20,866.3}{2 \cdot \pi \cdot 2,258.48} + 10000 \cdot 9,228.4 \frac{1}{\pi \cdot 2,258.48^{-2}} = 20.4634 \text{ kg/cm} \\ \alpha &= \frac{P_v}{P_e \cdot D_o} = 9.803 \cdot \frac{20.4634}{0.8 \cdot 4,534} = 0.0553 \\ n &= 7 \\ m &= \frac{1.23}{\left(\frac{L}{D_o}\right)^2} = \frac{1.23}{\left(\frac{4,297.99}{4,534}\right)^2} = 1.3688 \\ Ratio P_e &= \frac{n^2 - 1 + m + m \cdot \alpha}{n^2 - 1 + m} = \frac{7^2 - 1 + 1.3688 + 1.3688 \cdot 0.0553}{7^2 - 1 + 1.3688} = 1.0015 \end{split}$$

 $Ratio P_e \cdot P_e \leq MAEP$

 $(1.0015 \cdot 0.8 = 0.8) \le 0.97$

Cylinder design thickness is satisfactory.

External Pressure + Weight + Wind Loading Check at Bottom Seam (Bergman, ASME paper 54-A-104)

$$\begin{split} P_v &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_m} + \frac{M}{\pi \cdot R_m^2} = \frac{0.60 \cdot 10 \cdot -142,603.6}{2 \cdot \pi \cdot 2,258.48} + 10000 \cdot 19.6 \frac{1000}{\pi \cdot 2,258.48} = -60.2834 \text{ kg/cm} \\ \alpha &= \frac{P_v}{P_e \cdot D_o} = 9.803 \cdot -\frac{60.2834}{0.8 \cdot 4,534} = -0.163 \\ n &= 7 \\ m &= \frac{1.23}{\left(\frac{L}{D_o}\right)^2} = \frac{1.23}{\left(\frac{4,297.99}{4,534}\right)^2} = 1.3688 \\ Ratio P_e &= \frac{n^2 - 1 + m + m \cdot \alpha}{n^2 - 1 + m} = \frac{7^2 - 1 + 1.3688 + 1.3688 \cdot -0.163}{7^2 - 1 + 1.3688} = 1 \end{split}$$

 $Ratio P_e \cdot P_e \leq \text{MAEP}$

 $(1 \cdot 0.8 = 0.8) \le 0.97$

Cylinder design thickness is satisfactory.

$$P_{v} = \frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m}} + \frac{M}{\pi \cdot R_{m}^{2}} = \frac{1.08 \cdot 10 \cdot 20,866.3}{2 \cdot \pi \cdot 2,258.48} + 10000 \cdot 125,019.9 \frac{1}{\pi \cdot 2,258.48^{-2}} = 93.9580 \text{ kg/cm}$$

$$\alpha = \frac{P_{v}}{P_{e} \cdot D_{o}} = 9.803 \cdot \frac{93.958}{0.8 \cdot 4,534} = 0.254$$

$$n = 7$$

$$m = \frac{1.23}{\left(\frac{L}{D_{o}}\right)^{2}} = \frac{1.23}{\left(\frac{4.297.99}{4,534}\right)^{2}} = 1.3688$$

$$RatioP_{e} = \frac{n^{2} - 1 + m + m \cdot \alpha}{n^{2} - 1 + m} = \frac{7^{2} - 1 + 1.3688 + 1.3688 \cdot 0.254}{7^{2} - 1 + 1.3688} = 1.007$$

 $Ratio P_e \cdot P_e \leq \text{MAEP}$

 $(1.007 \cdot 0.8 = 0.81) \le 0.97$

Cylinder design thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check at Bottom Seam(Bergman, ASME paper 54-A-104)

$$\begin{split} P_v &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m} + \frac{M}{\pi \cdot R_m^2} = \frac{0.52 \cdot 10 \cdot .142, 603.6}{2 \cdot \pi \cdot 2,258.48} + 1000 \cdot \frac{210}{\pi \cdot 2,258.48^{-2}} = -51.7232 \text{ kg/cm} \\ \alpha &= \frac{P_v}{P_e \cdot D_o} = 9.803 \cdot -\frac{51.7232}{0.8 \cdot 4,534} = -0.1398 \\ n &= 7 \\ m &= \frac{1.23}{\left(\frac{L}{D_o}\right)^2} = \frac{1.23}{\left(\frac{4,297.99}{4,534}\right)^2} = 1.3688 \\ Ratio P_e &= \frac{n^2 - 1 + m + m \cdot \alpha}{n^2 - 1 + m} = \frac{7^2 - 1 + 1.3688 + 1.3688 \cdot -0.1398}{7^2 - 1 + 1.3688} = 1 \\ Ratio P_e \cdot P_e &\leq \text{MAEP} \\ (1 \cdot 0.8 = 0.8) &\leq 0.97 \end{split}$$

Cylinder design thickness is satisfactory.

Thickness Required Due to Pressure + External Loads									
Condition	Pressure P (bar)	Allowable Stress Stress Increas S _t	Before UG-23 se (kg/cm ²) S _c	Temperature (°C)	Corrosion C (mm)	Location	Load	Req'd Thk Due to Tension (mm)	Req'd Thk Due to Compression (mm)
						T	Wind	<u>5.68</u>	<u>5.56</u>
Operating Hat & Carradad	7	1 407 2	760.9	10	2.24	Тор	Seismic	<u>6.21</u>	<u>5.04</u>
Operating, not & Corroded	1	1,407.2	<u>709.0</u>	40	5.24	Bottom	Wind	<u>6.42</u>	<u>6.13</u>
						Bottom	Seismic	<u>6.48</u>	<u>6.07</u>
						Top	Wind	<u>5.67</u>	<u>5.54</u>
Operating Hot & New	7	1 407 2	843 3	40	0	TOP	Seismic	<u>6.21</u>	<u>5</u>
Operating, not a new	'	1,407.2	040.0	40		Bottom	Wind	<u>6.42</u>	<u>6.13</u>
						Bottom	Seismic	<u>6.48</u>	<u>6.07</u>
Hot Shut Down, Corroded			<u>769.8</u>	40	3.24	Top	Wind	<u>0.04</u>	<u>0.27</u>
	0	1,407.2				төр	Seismic	<u>0.5</u>	<u>1.22</u>
						Bottom	Wind	<u>0.71</u>	<u>0.43</u>
							Seismic	<u>0.78</u>	<u>0.37</u>
Hot Shut Down, New	0	1,407.2	<u>843.3</u>	40	0	Top Bottom	Wind	<u>0.05</u>	<u>0.27</u>
							Seismic	<u>0.5</u>	<u>1.17</u>
							Wind	<u>0.72</u>	<u>0.43</u>
							Seismic	<u>0.78</u>	<u>0.37</u>
	0	1,407.2	<u>769.8</u>	21.11	3.24	Тор	Wind	<u>0.04</u>	<u>0.27</u>
Empty Corroded							Seismic	<u>0.06</u>	<u>0.41</u>
						Bottom	Wind	<u>0.02</u>	<u>0.01</u>
							Seismic	<u>0.02</u>	<u>0.01</u>
			843.3			Top	Wind	<u>0.05</u>	<u>0.27</u>
Empty, New	0	1.407.2		21 11	0		Seismic	<u>0.06</u>	<u>0.43</u>
						Bottom	Wind	<u>0.02</u>	<u>0.01</u>
							Seismic	<u>0.02</u>	<u>0.01</u>
						Тор	Wind	<u>1.23</u>	<u>1.46</u>
Vacuum	-0.8	1.407.2	769.8	40	3.24		Seismic	<u>0.28</u>	<u>2.41</u>
						Bottom	Wind	<u>0.06</u>	<u>0.41</u>
							Seismic	<u>0.12</u>	<u>0.52</u>
Hot Shut Down, Corroded, Weight &	0	1,407.2	769.8	40	3.24	Тор	Weight	<u>0.16</u>	<u>0.22</u>
Eccentric Moments Only	Ľ	.,				Bottom	Weight	<u>0.71</u>	<u>0.71</u>

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC},$ (table CS-2 Metric)

$$A = rac{0.125}{R_o/t} = rac{0.125}{2,267/13.76} = 0.000759$$

 $B=769.8\,$ kg/cm 2

$$S = rac{1,407.2}{1.00} = 1,407.2 \, {
m kg/cm}^2$$

 $S_{cHC} = \min(B,S) = \frac{769.8 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Hot and New- $\rm S_{CHN},$ (table CS-2 Metric)

$$\begin{split} A &= \frac{0.125}{R_o/t} = \frac{0.125}{2,267/17} = 0.000937\\ B &= 843.3 \ \text{kg/cm}^2\\ S &= \frac{1,407.2}{1.00} = 1,407.2 \ \text{kg/cm}^2\\ S_{cHN} &= \min \ (B,S) = \underline{843.3 \ \text{kg/cm}^2} \end{split}$$

Allowable Compressive Stress, Cold and New- S_{cCN} , (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,267/17} = 0.000937$$

$$B = 843.3$$
 kg/cm²

$$S = \frac{1{,}407.2}{1.00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{cCN} = \min(B,S) = \frac{843.3 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Cold and Corroded- $S_{cCC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,267/13.76} = 0.000759$$

 $B=769.8\,\,\mathrm{kg/cm}^2$

$$S = {1,407.2 \over 1.00} = 1,407.2 ~{
m kg/cm^{-2}}$$

 $S_{c\mathbb{C}} = \min(B,S) = \frac{769.8 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Vacuum and Corroded- S_{CVC} , (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,267/13.76} = 0.000759$$

 $B\,=769.8\,$ kg/cm 2

$$S = \frac{1{,}407.2}{1{,}00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{cVC} = \min(B,S) = \frac{769.8 \text{ kg/cm}^2}{2}$

Operating, Hot & Corroded, Wind, Above Support Point

$$\begin{split} t_p &= \frac{P \cdot R}{2 \cdot S_t \cdot K_s \cdot E_c + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.251.6}{2 \cdot 1.380 \cdot 1.00 \cdot 1.00 + 0.40 \cdot |7|} \\ &= 5.7 \text{ mm} \\ t_m &= \frac{M}{\pi \cdot R_h^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 9.228.4 \frac{1}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_w &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{0.60 \cdot 20.866.3}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= 0.06 \text{ mm} \\ t_t &= t_p + t_m - t_w \qquad (\text{total required, tensile}) \\ &= 5.7 + 0.04 - (0.06) \\ &= 5.68 \text{ mm} \\ t_w c &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{20.866.3}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= 0.1 \text{ mm} \\ t_c &= |t_m + t_w - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0.04 + (0.1) - (5.7)| \\ &= 5.56 \text{ mm} \\ \\ \text{Maximum allowable working pressure, Longitudinal Stress} \end{split}$$

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 \cdot (13.76 - 0.04 + (0.06))}{2,251.6 - 0.40 \cdot (13.76 - 0.04 + (0.06))}$$
$$= \underline{16.94} \text{ bar}$$

Operating, Hot & New, Wind, Above Support Point

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1.380 \cdot 1.00 \cdot 1.00 + 0.40 \cdot |7|} \\ &= 5.7 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 9,249.1 \frac{1}{\pi \cdot 2.258.5^{-2} \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{w} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot 24,350.4}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= 0.07 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 5.7 + 0.04 - (0.07) \\ &= 5.67 \text{ mm} \\ t_{wcc} &= \frac{24,350.4}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= 0.12 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.04 + (0.12) - (5.7)| \\ &= 5.54 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 \cdot (17 - 0.04 + (0.07))}{2,250 - 0.40 \cdot (17 - 0.04 + (0.07))}$$
$$= 20.96 \text{ bar}$$

Hot Shut Down, Corroded, Wind, Above Support Point

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 9.228.4 \frac{1}{\pi \cdot 2.258.48} \cdot \frac{1}{2 \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0.07 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 20.866.3 \frac{1}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.11 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.07 - (0.11)| \\ &= 0.04 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{20.866.3}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.19 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.07 + (0.19) - (0) \\ &= 0.27 \text{ mm} \\ \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 9,228.4 \frac{1}{\pi \cdot 2,258.48} \cdot \frac{1}{2} \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0.07 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 20,866.3 \frac{1}{2 \cdot \pi \cdot 2,258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.11 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.07 - (0.11)| \\ &= 0.04 \text{ mm} \\ t_{w} c &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{20,866.3}{2 \cdot \pi \cdot 2,258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.19 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.07 + (0.19) - (0) \\ &= 0.27 \text{ mm} \\ \\ \hline \text{Empty. New. Wind. Above Support Point} \end{split}$$

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 9,249.1 \frac{1}{\pi \cdot 2,258.5^{-2} \cdot 826.96 \cdot 1.00} \cdot 98066.5 \\ &= 0.07 \text{ mm} \\ t_{w} &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= 0.60 \cdot 24,350.4 \frac{1}{2 \cdot \pi \cdot 2,258.5 \cdot 826.96 \cdot 1.00} \cdot 98.0665 \\ &= 0.12 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0.07 - (0.12)| \\ &= 0.05 \text{ mm} \\ t_{w c} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{24,350.4}{2 \cdot \pi \cdot 2,258.5 \cdot 826.96 \cdot 1.00} \cdot 98.0665 \\ &= 0.2 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0.07 + (0.2) - (0) \\ &= 0.27 \text{ mm} \\ \textbf{Yacuum, Wind, Above Support Point} \end{split}$$

$$\begin{split} t_p &= \frac{P \cdot R}{2 \cdot S_c \cdot K_s + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 754.91 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.19 \text{ mm} \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 9.228.4 \frac{1}{\pi \cdot 2.258.48} \cdot \frac{2}{754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0.07 \text{ mm} \\ t_w &= 0.6 \cdot \frac{W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor} \qquad (Weight) \\ &= 0.60 \cdot 20, 866.3 \frac{1}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.11 \text{ mm} \\ t_t &= |t_p + t_m - t_w| \qquad (total, net compressive) \\ &= |-1.19 + 0.07 - (0.11)| \\ &= 1.23 \text{ mm} \\ t_w c &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{20,866.3}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.19 \text{ mm} \\ t_c &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0.07 + (0.19) - (-1.19) \\ &= 1.46 \text{ mm} \\ \end{split}$$

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 754.91 \cdot 1.00 \cdot (13.76 - 0.07 - 0.19)}{2,251.6 - 0.40 \cdot (13.76 - 0.07 - 0.19)}$$
$$= \underline{9.07} \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Above Support Point

Operating, Hot & Corroded, Wind, Below Support Point

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.251.6}{2 \cdot 1.380 \cdot 1.00 \cdot 1.00 + 0.40 \cdot |7|} \\ &= 5.7 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 19.6 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{-142.603.6}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.71 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 5.7 + 0 - (-0.71) \\ &= 6.42 \text{ mm} \\ t_{wc} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot -142.603.6}{2 \cdot \pi \cdot 2.25848 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.43 \text{ mm} \\ t_{c} &= |t_{me} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0 + (-0.43) - (5.7)| \\ &= 6.13 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 \cdot (13.76 - 0 + (-0.71))}{2,251.6 - 0.40 \cdot (13.76 - 0 + (-0.71))}$$
$$= 16.03 \text{ bar}$$

Operating, Hot & New, Wind, Below Support Point

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{T \cdot 2.250}{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 + 0.40 \cdot |7|} \\ &= 5.7 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (bending) \\ &= 19.6 \frac{W}{\pi \cdot 2.258.5^{-2} \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{-142,880.6}{2 \cdot \pi \cdot 2.258.5 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.72 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 5.7 + 0 - (-0.72) \\ &= 6.42 \text{ mm} \\ t_{wc} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot S_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot -142,880.6}{2 \cdot \pi \cdot 2.258.5 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.43 \text{ mm} \\ t_{c} &= |t_{me} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0 + (-0.43) - (5.7)| \\ &= 6.13 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 \cdot (17 - 0 + (-0.72))}{2,250 - 0.40 \cdot (17 - 0 + (-0.72))}$$
$$= 20.03 \text{ bar}$$

Hot Shut Down, Corroded, Wind, Below Support Point
$$\begin{array}{l} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{1} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 19.6 \frac{M}{\pi \cdot 2,258.48^{-2} \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{1} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{-142,603.6}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.71 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.71) \\ &= 0.71 \text{ mm} \\ t_{w} c &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{1} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.60 \cdot -142,603.6}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.43 \text{ mm} \\ t_{c} &= |t_{m} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.43) - (0)| \\ &= 0.43 \text{ mm} \\ \end{array}$$

$$\begin{split} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 19.6 \frac{M}{\pi \cdot 2,258.5^{-2} \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_w &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (Weight) \\ &= \frac{-142,880.6}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.72 \text{ mm} \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.72) \\ &= 0.72 \text{ mm} \\ t_w c &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (Weight) \\ &= \frac{0.60 \cdot -142,880.6}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.43 \text{ mm} \\ t_c &= |t_{mc} + t_{wc} - t_{yc}| & (\text{total, net tensile}) \\ &= |0 + (-0.43) - (0)| \\ &= 0.43 \text{ mm} \\ \end{split}$$

$$\begin{array}{ll} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{1} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 19.6 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{-3.538.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.02 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.02) \\ &= 0.02 \text{ mm} \\ t_{w} \ c &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.60 \cdot -3.538.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.01 \text{ mm} \\ t_{c} \ c &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.01) - (0)| \\ &= 0.01 \text{ mm} \end{array}$$

$$\begin{split} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 19.6 \frac{M}{\pi \cdot 2.258.5^{-2} \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_w &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (Weight) \\ &= \frac{-4.052.3}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.02 \text{ mm} \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.02) \\ &= 0.02 \text{ mm} \\ t_w c &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_m \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (Weight) \\ &= \frac{0.02 \text{ mm}}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.01 \text{ mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.01) - (0)| \\ &= 0.01 \text{ mm} \\ \hline \text{Vacuum, Wind, Below Support Point} \end{split}$$

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{c} \cdot E_{c} + 0.40 \cdot |P|} \qquad (Pressure) \\ &= \frac{-08 \cdot 2.251.6}{2 \cdot 1.380 \cdot 100 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -0.65 \, \text{mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (bending) \\ &= 19.6 \frac{\pi}{\pi \cdot 2.258.48} \frac{2}{\cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \, \text{mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{-142.603.6}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.71 \, \text{mm} \\ t_{1} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= -0.65 + 0 - (-0.71) \\ &= 0.06 \, \text{mm} \\ t_{pc} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (Pressure) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 7.54.91 \cdot 1.00 + 0.40 \cdot 0.8|} \\ &= -1.19 \, \text{mm} \\ t_{mc} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (bending) \\ &= \frac{19.6}{\pi \cdot 2.258.48} \frac{2}{\cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0 \, \text{mm} \\ t_{wc} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (bending) \\ &= \frac{10.6 \cdot W}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (bending) \\ &= 0 \, \text{mm} \\ t_{wc} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (bending) \\ &= 0 \, \text{mm} \\ t_{wc} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot 0.142,603.6}{\pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0065 \\ &= -0.78 \, \text{mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0 + (-0.78) - (-1.19) \\ &= 0.41 \, \text{mm} \\ \end{bmatrix}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 754.91 \cdot 1.00 \cdot (13.76 - 0 - 0.78)}{2.251.6 - 0.40 \cdot (13.76 - 0 - 0.78)}$$
$$= 9.78 \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Below Support Point

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{0}{\pi \cdot 2,258.48} \cdot \frac{0}{2 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{-142,603.6}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.71 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.71) \\ &= 0.71 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.71) - (0)| \\ &= 0.71 \text{ mm} \end{split}$$

Operating, Hot & Corroded, Seismic, Above Support Point

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{1} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.251.6}{2 \cdot 1.380 \cdot 1.00 \cdot 1.00 + 0.40 \cdot |7|} \\ &= 5.7 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{1} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 125,019.9 \frac{1}{\pi \cdot 2.258.48} \frac{2}{\cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0.55 \text{ mm} \\ t_{w} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{1} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.52 \cdot 20,866.3}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= 0.05 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 5.7 + 0.55 - (0.05) \\ &= 6.21 \text{ mm} \\ t_{w} c &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{1} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{1.08 \cdot 20,866.3}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= 0.11 \text{ mm} \\ t_{c} &= |t_{me} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.55 + (0.11) - (5.7)| \\ &= 5.04 \text{ mm} \\ \\ \text{Maximum allowable working pressure, Longitudinal Stress} \end{split}$$

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 \cdot (13.76 - 0.55 + (0.05))}{2,251.6 - 0.40 \cdot (13.76 - 0.55 + (0.05))}$$
$$= \underline{16.29} \text{ bar}$$

Operating, Hot & New, Seismic, Above Support Point

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1.380 \cdot 1.00 \cdot 1.00 + 0.40 \cdot |7|} \\ &= 5.7 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 128,051.2 \frac{M}{\pi \cdot 2.258.5^{-2} \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0.57 \text{ mm} \\ t_{w} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.52 \cdot 24,350.4}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= 0.06 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 5.7 + 0.57 - (0.06) \\ &= \frac{6.21 \text{ mm}}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{1.08 \cdot 24,350.4}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= 0.13 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.57 + (0.13) - (5.7)| \\ &= 5 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 \cdot (17 - 0.57 + (0.06))}{2,250 - 0.40 \cdot (17 - 0.57 + (0.06))}$$
$$= 20.29 \text{ bar}$$

Hot Shut Down, Corroded, Seismic, Above Support Point

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$125,019.9 {\pi \cdot 2,\!258.48^{-2} \cdot 1,\!380 \cdot 1.00 \cdot 1.00} \cdot 98066.5$	
	=	0.55 mm	
tw	=	$\frac{\left(0.6 - 0.14 \cdot S_{DS}\right) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 20,866.3}{2\cdot \pi\cdot 2,258.48\cdot 1,380\cdot 1.00\cdot 1.00}\cdot 98.0665$	
	=	0.05 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.55-(0.05)	
	=	<u>0.5 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$125,019.9 \underbrace{\qquad \qquad }_{\pi \ \cdot \ 2,258.48 \ ^2 \ \cdot \ 754.91 \ \cdot \ 1.00} \ \cdot \ 98066.5$	
	=	1.01 mm	
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08\cdot 20,866.3}{2\cdot \pi\cdot 2,258.48\cdot 754.91\cdot 1.00}\cdot 98.0665$	
	=	0.21 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	1.01+(0.21)-(0)	
	=	<u>1.22 mm</u>	

Hot Shut Down, New, Seismic, Above Support Point

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$128,051.2 {\pi \cdot 2,\!258.5 \ ^2 \cdot 1,\!380 \cdot 1.00 \cdot 1.00} \cdot 98066.5$	
	=	0.57 mm	
t _w	=	$\frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 24,350.4}{2\cdot \pi\cdot 2,258.5\cdot 1,380\cdot 1.00\cdot 1.00}\cdot 98.0665$	
	=	0.06 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.57-(0.06)	
	=	<u>0.5 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$\frac{128,051.2}{\pi\cdot 2,\!258.5} \cdot \frac{1}{2} \cdot 826.96 \cdot 1.00} \cdot 98066.5$	
	=	0.95 mm	
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08\cdot 24,350.4}{2\cdot \pi\cdot 2,258.5\cdot 826.96\cdot 1.00}\cdot 98.0665$	
	=	0.22 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.95+(0.22)-(0)	
	=	<u>1.17 mm</u>	N
Emp	ty,	Corroded, Seismic, Above Support Point	1

Empty, Corroded, Seismic, Above Support Point

tp	=	0 mm	(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(bending)
	=	$25,479.9 \underbrace{\qquad \qquad }_{\pi \cdot 2,258.48 \ ^{2} \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98066.5$	
	=	0.11 mm	
t _w	=	$\frac{\left(0.6 - 0.14 \cdot S_{DS}\right) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{0.52\cdot 20,866.3}{2\cdot \pi\cdot 2,258.48\cdot 1,380\cdot 1.00\cdot 1.00}\cdot 98.0665$	
	=	0.05 mm	
tt	=	$t_p + t_m - t_w$	(total required, tensile)
	=	0+0.11-(0.05)	
	=	<u>0.06 mm</u>	
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(bending)
	=	$25,479.9 \underbrace{}_{\pi\ \cdot\ 2,258.48\ ^2\ \cdot\ 754.91\ \cdot\ 1.00} \cdot 98066.5$	
	=	0.21 mm	
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$	(Weight)
	=	$\frac{1.08 \cdot 20,866.3}{2 \cdot \pi \cdot 2,258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665$	
	=	0.21 mm	
t _c	=	$t_{mc} + t_{wc} - t_{pc}$	(total required, compressive)
	=	0.21 + (0.21) - (0)	
	=	<u>0.41 mm</u>	
<u>Emp</u>	<u>ty,</u>	New, Seismic, Above Support Point	

tp	=	0 mm		(Pressure)
t _m	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor}$		(bending)
	=	$28,678.7 \frac{1}{\pi \cdot 2,258.5 \ ^2 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 5$	98066.5	
	=	0.13 mm		
tw	=	$\frac{\left(0.6-0.14\cdot S_{DS}\right)\cdot W}{2\cdot \pi\cdot R_{m}\cdot S_{t}\cdot K_{s}\cdot E_{c}}\cdot \text{MetricFactor}$		(Weight)
	=	$\frac{0.52\cdot 24,350.4}{2\cdot \pi\cdot 2,258.5\cdot 1,380\cdot 1.00\cdot 1.00}\cdot 98.0668$	5	
	=	0.06 mm		
tt	=	$t_p + t_m - t_w$		(total required, tensile)
	=	0+0.13-(0.06)		
	=	<u>0.06 mm</u>		
t _{mc}	=	$\frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$		(bending)
	=	$28,678.7 \frac{1}{\pi \cdot 2,258.5^{-2} \cdot 826.96 \cdot 1.00} \cdot 98066$.5	
	=	0.21 mm		
t _{w c}	=	$\frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot \text{MetricFactor}$		(Weight)
	=	$\frac{1.08\cdot 24,350.4}{2\cdot \pi\cdot 2,258.5\cdot 826.96\cdot 1.00}\cdot 98.0665$	$\langle \langle \rangle$	
	=	0.22 mm		
t _c	=	$t_{mc} + t_{wc} - t_{pc}$		(total required, compressive)
	=	0.21 + (0.22) - (0)		
	=	<u>0.43 mm</u>	-	*
<u>Vacu</u>	<u>iur</u>	n, Seismic, Above Support Point	K	

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 754.91 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.19 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 125,019.9 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 1.01 \text{ mm} \\ t_{w} &= (0.6 - 0.14 \cdot S_{DS}) \cdot \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \quad (\text{Weight}) \\ &= 0.52 \cdot 20,866.3 \frac{1}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.1 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (total, net compressive) \\ &= |-1.19 + 1.01 - (0.1)| \\ &= 0.28 \text{ mm} \\ t_{w} c &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \quad (\text{Weight}) \\ &= \frac{1.08 \cdot 20,866.3}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.21 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 1.01 + (0.21) - (-1.19) \\ &= 2.41 \text{ mm} \\ \end{bmatrix}$$

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 754.91 \cdot 1.00 \cdot (13.76 - 1.01 - 0.21)}{2,251.6 - 0.40 \cdot (13.76 - 1.01 - 0.21)}$$
$$= \frac{8.43}{2} \text{ bar}$$

Operating, Hot & Corroded, Seismic, Below Support Point

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2,251.6}{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 + 0.40 \cdot |7|} \\ &= 5.7 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= \frac{210}{\pi \cdot 2,258.48^{-2} \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{1.08 \cdot .142,603.6}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.77 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 5.7 + 0 - (-0.77) \\ &= \frac{6.48 \text{ mm}}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.52 \cdot .142,603.6}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.37 \text{ mm} \\ t_{c} &= |t_{me} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= 0.37 \text{ mm} \\ t_{c} &= |t_{me} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0 + (-0.37) - (5.7)| \\ &= 6.07 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 \cdot (13.76 - 0 + (-0.77))}{2,251.6 - 0.40 \cdot (13.76 - 0 + (-0.77))}$$
$$= \underline{15.95} \text{ bar}$$

Operating, Hot & New, Seismic, Below Support Point

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{1} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (Pressure) \\ &= \frac{7 \cdot 2.250}{2 \cdot 1.380 \cdot 1.00 \cdot 1.00 + 0.40 \cdot |7|} \\ &= 5.7 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot MetricFactor \qquad (bending) \\ &= \frac{221}{\pi \cdot 2.258.5^{-2} \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot MetricFactor \qquad (Weight) \\ &= \frac{1.08 \cdot .142, 880.6}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.78 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 5.7 + 0 - (-0.78) \\ &= 6.48 \text{ mm} \\ t_{w} c &= \frac{(06 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot MetricFactor \qquad (Weight) \\ &= \frac{0.52 \cdot .142, 880.6}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.37 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= 0.37 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0 + (-0.37) - (5.7)| \\ &= 6.07 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 1.00 \cdot (17 - 0 + (-0.78))}{2,250 - 0.40 \cdot (17 - 0 + (-0.78))}$$

= 19.96 bar

Hot Shut Down, Corroded, Seismic, Below Support Point

50.4

5

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{\ell} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{221}{\pi \cdot 2,258.5^{-2} \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{\ell} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot .142,880.6}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.78 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.78) \\ &= 0.78 \text{ mm} \\ t_{w} c &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{\ell} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.78 \text{ mm}}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.37 \text{ mm} \\ t_{w} c &= \frac{(0.5 - .142,880.6)}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.37 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.37) - (0)| \\ &= 0.37 \text{ mm} \\ \text{Empty, Corroded, Seismic, Below Support Point} \end{split}$$

$$\begin{array}{l} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{1} \cdot K_{*} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 81.2 \frac{M}{\pi \cdot 2,258.48^{-2} \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{1} \cdot K_{*} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 3,538.9}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.02 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.02) \\ &= 0.02 \text{ mm} \\ t_{w c} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{1} \cdot K_{*} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.52 \cdot -3,538.9}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.01 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.01) - (0)| \\ &= 0.01 \text{ mm} \end{array}$$

$$\begin{split} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 92.6 \frac{M}{\pi \cdot 2,258.5^{-2} \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_W &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 4,052.3}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.02 \text{ mm} \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.02) \\ &= 0.02 \text{ mm} \\ t_W c &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.52 \cdot 4,052.3}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 1.00} \cdot 98.0665 \\ &= -0.01 \text{ mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.01) - (0)| \\ &= 0.01 \text{ mm} \\ \\ \text{Vacuum, Seismic, Below Support Point} \end{split}$$

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{1} \cdot K_{*} \cdot E_{c} + 0.40 \cdot |P|} \qquad (Pressure) \\ &= \frac{-0.8 \cdot 2251.6}{2 \cdot 1.380 \cdot 1.00 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -0.65 \, mm \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{1} \cdot K_{*} \cdot E_{c}} \cdot MetricFactor \qquad (bending) \\ &= \frac{210}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98066.5 \\ &= 0 \, mm \\ t_{w} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{1} \cdot K_{*} \cdot E_{c}} \cdot MetricFactor \qquad (Weight) \\ &= \frac{1.08 \cdot 142.603.6}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 1.00} \cdot 98.0605 \\ &= -0.77 \, mm \\ t_{1} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= -0.65 + 0 - (-0.77) \\ &= 0.12 \, mm \\ t_{rw} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{*} + 0.40 \cdot |P|} \qquad (Pressure) \\ &= -1.19 \, mm \\ t_{mc} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{*}} \cdot MetricFactor \qquad (bending) \\ &= \frac{210}{\pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0 \, mm \\ t_{wc} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{*}} \cdot MetricFactor \qquad (bending) \\ &= \frac{210}{\pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0 \, mm \\ t_{wc} &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{*}} \cdot MetricFactor \qquad (bending) \\ &= \frac{0.52 \cdot 142.603.6}{2 \cdot \pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= -0.67 \, mm \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0 + (-0.67) - (-1.19) \\ &= 0.52 \, nm \end{aligned}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 754.91 \cdot 1.00 \cdot (13.76 - 0 - 0.67)}{2,251.6 - 0.40 \cdot (13.76 - 0 - 0.67)}$$

= <u>9.7</u> bar

Legs #1

Inputs		
Leg material		
Leg description	W 18x106 (Flange out)	
Number of legs, N	4	
Overall length	1,828.8 mm	
Base to girth seam length	1,524 mm	
Effective length coefficient, K	1.5	
Coefficient, C _m	0.85	
Leg yield stress, F _y	2,531.05 kg _f /cm ²	
Leg elastic modulus, E	2,038,901.782 kg _f /cm ²	
Anchor Bolt	S	
Anchor bolt size	1.875" series 8 threaded	
Anchor bolt material		
Bolt circle, BC	4,584.8 mm	
Anchor bolts/leg, n	1	
Anchor bolt allowable stress, $\mathbf{S}_{\mathbf{b}}$	1,406.139 kg _f /cm ²	
Anchor bolt corrosion allowance	0 mm	
Anchor bolt hole clearance	9.53 mm	
Base Plate		
Base plate length	584.2 mm	
Base plate width	381 mm	
Base plate thickness	57 mm (<u>19.58</u> mm required)	
Base plate allowable stress	1,687.367 kg _f /cm ²	
Foundation allowable bearing stress	116.569 kg _f /cm ²	
Welds		
Leg to shell fillet weld	60 mm (<u>58.77</u> mm required)	
Legs braced	No	

Note: The support attachment point is assumed to be 25.4 mm up from the cylinder circumferential seam.

	Wind operating corroded, Moment = 9,208.8 kg _f -m												
Force attack angle °	Leg position °	Axial end load kg _f	Shear resisted kg _f	Axial f _a kg _f /cm ²	Bending f _{bx} kg _f /cm ²	Bending f _{by} kg _f /cm ²	Ratio H ₁₋₁	Ratio H ₁₋₂					
	0	22,519.7	470.7	112.237	181.025	0	0.1731	0.1823					
0	90	40,917.9	54.2	203.932	291.225	12.406	0.3019	0.3160					
Ŭ	180	42,949.0	470.7	214.055	326.427	0	0.3207	0.3364					
	270	40,917.9	54.2	203.932	291.225	12.406	0.3019	0.3160					
	0	22,519.7	262.4	112.237	168.459	42.465	0.1885	0.2002					
45	90	22,519.7	262.4	112.237	168.459	42.465	0.1885	0.2002					
45	180	42,949.0	262.4	214.055	313.86	42.465	0.3364	0.3543					
	270	42,949.0	262.4	214.055	313.86	42.465	0.3364	0.3543					
	0	22,519.7	353.7	112.237	173.501	42.893	0.1913	0.2034					
22	90	22,519.7	171.2	112.237	164.277	33.215	0.1816	0.1921					
52	180	42,949.0	353.7	214.055	318.903	42.893	0.3392	0.3575					
	270	42,949.0	171.2	214.055	309.678	33.215	0.3294	0.3462					

Wind operating new, Moment = 9,229.6 kg_f-m

Wind operating new, Moment = 9,229.6 kg _f -m										
Force attack angle °	Leg position °	Axial end load kg _f	Shear resisted kg _f	Axial f _a kg _f /cm ²	Bending f _{bx} kg _f /cm ²	Bending f _{by} kg _f /cm ²	Ratio H ₁₋₁	Ratio H ₁₋₂		
	0	23,083.5	470.7	115.046	185.038	0	0.1771	0.1865		
0	90	41,865.2	54.2	208.653	297.967	12.405	0.3087	0.3232		
Ŭ	180	43,900.8	470.7	218.799	333.201	0	0.3276	0.3435		
	270	41,865.2	54.2	208.653	297.967	12.405	0.3087	0.3232		
	0	23,083.5	262.4	115.046	172.471	42.464	0.1926	0.2044		
45	90	23,083.5	262.4	115.046	172.471	42.464	0.1926	0.2044		
45	180	43,900.8	262.4	218.799	320.634	42.464	0.3433	0.3614		
	270	43,900.8	262.4	218.799	320.634	42.464	0.3433	0.3614		
	0	23,083.5	353.7	115.046	177.514	42.892	0.1954	0.2077		
22	90	23,083.5	171.2	115.046	168.29	33.215	0.1857	0.1964		
32	180	43,900.8	353.7	218.799	325.677	42.892	0.3461	0.3647		
	270	43,900.8	171.2	218.799	316.453	33.215	0.3363	0.3534		

	Wind empty corroded, Moment = 9,208.8 kg _f -m												
Force attack angle °	Leg position °	Axial end load kg _f	Shear resisted kg _f	Axial f _a kg _f /cm ²	Bending f _{bx} kg _f /cm ²	Bending f _{by} kg _f /cm ²	Ratio H ₁₋₁	Ratio H ₁₋₂					
	0	1,660.0	470.7	8.273	32.561	0	0.0225	0.0249					
0	90	6,151.7	54.2	30.66	43.784	12.406	0.0507	0.0538					
Ŭ	180	8,182.8	470.7	40.783	78.986	0	0.0696	0.0741					
	270	6,151.7	54.2	30.66	43.784	12.406	0.0507	0.0538					
	0	1,660.0	262.4	8.273	19.994	42.465	0.0378	0.0428					
45	90	1,660.0	262.4	8.273	19.994	42.465	0.0378	0.0428					
45	180	8,182.8	262.4	40.783	66.419	42.465	0.0849	0.0920					
	270	8,182.8	262.4	40.783	66.419	42.465	0.0849	0.0920					
	0	1,660.0	353.7	8.273	25.037	42.893	0.0405	0.0461					
32	90	1,660.0	171.2	8.273	15.812	33.215	0.0309	0.0348					
52	180	8,182.8	353.7	40.783	71.462	42.893	0.0877	0.0953					
	270	8,182.8	171.2	40.783	62.237	33.215	0.0780	0.0840					

Wind empty new, Moment = 9,229.6 kg_f-m

			• · ·		- /	51		
Force attack angle °	Leg position °	Axial end load ^{kg} f	Shear resisted kg _f	Axial f _a kg _f /cm ²	Bending f _{bx} kg _f /cm ²	Bending f _{by} kg _f /cm ²	Ratio H ₁₋₁	Ratio H ₁₋₂
	0	2,259.2	470.7	11.26	36.826	0	0.0269	0.0295
0	90	7,158.1	54.2	35.675	50.946	12.405	0.0580	0.0614
U	180	9,193.7	470.7	45.821	86.18	0	0.0769	0.0818
	270	7,158.1	54.2	35.675	50.946	12.405	0.0580	0.0614
	0	2,259.2	262.4	11.26	24.259	42.464	0.0421	0.0474
45	90	2,259.2	262.4	11.26	24.259	42.464	0.0421	0.0474
45	180	9,193.7	262.4	45.821	73.614	42.464	0.0922	0.0997
	270	9,193.7	262.4	45.821	73.614	42.464	0.0922	0.0997
	0	2,259.2	353.7	11.26	29.302	42.892	0.0449	0.0506
20	90	2,259.2	171.2	11.26	20.077	33.215	0.0352	0.0393
32	180	9,193.7	353.7	45.821	78.657	42.892	0.0950	0.1029
	270	9,193.7	171.2	45.821	69.432	33.215	0.0853	0.0916

	Wir	nd vacuum	corrode	d, Momer	nt = 9,208.	8 kg _f -m		
Force attack angle °	Leg position °	Axial end load kg _f	Shear resisted kg _f	Axial f _a kg _f /cm ²	Bending f _{bx} kg _f /cm ²	Bending f _{by} kg _f /cm ²	Ratio H ₁₋₁	Ratio H ₁₋₂
	0	22,519.7	470.7	112.237	181.025	0	0.1731	0.1823
0	90	40,917.9	54.2	203.932	291.225	12.406	0.3019	0.3160
Ŭ	180	42,949.0	470.7	214.055	326.427	0	0.3207	0.3364
	270	40,917.9	54.2	203.932	291.225	12.406	0.3019	0.3160
	0	22,519.7	262.4	112.237	168.459	42.465	0.1885	0.2002
45	90	22,519.7	262.4	112.237	168.459	42.465	0.1885	0.2002
45	180	42,949.0	262.4	214.055	313.86	42.465	0.3364	0.3543
	270	42,949.0	262.4	214.055	313.86	42.465	0.3364	0.3543
	0	22,519.7	353.7	112.237	173.501	42.893	0.1913	0.2034
22	90	22,519.7	171.2	112.237	164.277	33.215	0.1816	0.1921
52	180	42,949.0	353.7	214.055	318.903	42.893	0.3392	0.3575
	270	42,949.0	171.2	214.055	309.678	33.215	0.3294	0.3462

Seismic operating corroded, Moment = 124,809.8 kg_f-m

	Seismic operating corroded, moment = 124,809.8 kgf-m									
Force attack angle °	Leg position °	Axial end load ^{kg} f	Shear resisted kg _f	Axial f _a kg _f /cm ²	Bending f _{bx} kg _f /cm ²	Bending f _{by} kg _f /cm ²	Ratio H ₁₋₁	Ratio H ₁₋₂		
	0	-6,413.9	10,370.8	-31.966	502.787	0	0.2327	0.2799		
0	90	44,355.0	1,194.5	221.062	315.688	273.355	0.4626	0.4982		
	180	71,882.6	10,370.8	358.258	968.746	0	0.7531	0.8158		
	270	44,355.0	1,194.5	221.062	315.688	273.355	0.4626	0.4982		
	0	-6,413.9	5,782.7	-31.966	225.888	935.705	0.5664	0.6743		
45	90	-6,413.9	5,782.7	-31.966	225.888	935.705	0.5664	0.6743		
45	180	71,882.6	5,782.7	358.258	691.848	935.705	1.1057	1.2102		
	270	71,882.6	5,782.7	358.258	691.848	935.705	1.1057	1.2102		
	0	-6,413.9	7,794.0	-31.966	336.999	945.135	0.6277	0.7465		
20	90	-6,413.9	3,771.4	-31.966	133.743	731.888	0.4162	0.4971		
32	180	71,882.6	7,794.0	358.258	802.958	945.135	1.1675	1.2824		
	270	71,882.6	3,771.4	358.258	599.702	731.888	0.9510	1.0330		

Gove	Governing Condition : Seismic operating new, Moment = 127,830.2 kg _f -m												
Force attack angle °	Leg position °	Axial end load kg _f	Shear resisted kg _f	Axial f _a kg _f /cm ²	Bending f _{bx} kg _f /cm ²	Bending f _{by} kg _f /cm ²	Ratio H ₁₋₁	Ratio H ₁₋₂					
	0	-6,591.3	10,608.6	-32.851	514.533	0	0.2380	0.2864					
0	90	45,381.9	1,221.9	226.18	322.996	279.624	0.4733	0.5097					
Ŭ	180	73,575.6	10,608.6	366.696	991.28	0	0.7707	0.8349					
	270	45,381.9	1,221.9	226.18	322.996	279.624	0.4733	0.5097					
	0	-6,591.3	5,915.3	-32.851	231.284	957.164	0.5794	0.6898					
45	90	-6,591.3	5,915.3	-32.851	231.284	957.164	0.5794	0.6898					
40	180	73,575.6	5,915.3	366.696	708.031	957.164	1.1319	1.2383					
	270	73,575.6	5,915.3	366.696	708.031	957.164	1.1319	1.2383					
	0	-6,591.3	7,972.7	-32.851	344.943	966.81	0.6421	0.7636					
32	90	-6,591.3	3,857.9	-32.851	137.026	748.673	0.4257	0.5086					
52	180	<u>73,575.6</u>	7,972.7	<u>366.696</u>	<u>821.69</u>	<u>966.81</u>	<u>1.1951</u>	<u>1.3121</u>					
	270	73,575.6	3,857.9	366.696	613.772	748.673	0.9735	1.0571					

Seismic empty corroded, Moment = 25,398.7 kgf-m Axial Bending Bending Shear Axial Force Ratio Ratio Leg $\mathbf{f}_{\mathbf{b}\mathbf{y}}$ fa f_{bx} end load resisted attack H₁₋₁ H₁₋₂ position ° angle ° kg_f kg_f kg_f/cm² kg_f/cm² kg_f/cm² 0 -2,427.5 1,641.7 -12.099 89.642 0 0.0369 0.0457 90 6,668.5 189.1 33.235 47.462 43.272 0.0702 0.0762 0 12,270.3 1,641.7 61.154 159.696 0 0.1254 0.1359 180 47.462 0.0762 6,668.5 189.1 43.272 0.0702 270 33.235 0 -2,427.5 915.4 -12.099 45.809 148.122 0.0899 0.1081 -2,427.5 915.4 148.122 0.0899 0.1081 90 -12.099 45.809 45 180 12,270.3 915.4 61.154 115.863 148.122 0.1789 0.1983 270 12,270.3 915.4 61.154 115.863 148.122 0.1789 0.1983 0 -2,427.5 1,233.8 -12.099 63.398 149.615 0.0996 0.1195 597.0 -12.099 115.858 90 -2,427.5 31.223 0.0661 0.0801 32 180 12,270.3 1,233.8 61.154 133.452 149.615 0.1886 0.2097 270 12,270.3 597.0 61.154 101.277 115.858 0.1549 0.1703

Seismic empty new, Moment = 28,586.0 kg _f -m										
Force attack angle °	Leg position °	Axial end load kg _f	Shear resisted kg _f	Axial f _a kg _f /cm ²	Bending f _{bx} kg _f /cm ²	Bending f _{by} kg _f /cm ²	Ratio H ₁₋₁	Ratio H ₁₋₂		
	0	-2,611.2	1,894.4	-13.014	102.088	0	0.0426	0.0525		
0	90	7,759.4	218.2	38.672	55.226	49.932	0.0815	0.0884		
U	180	14,064.2	1,894.4	70.095	183.602	0	0.1440	0.1561		
	270	7,759.4	218.2	38.672	55.226	49.932	0.0815	0.0884		
	0	-2,611.2	1,056.3	-13.014	51.508	170.92	0.1037	0.1246		
45	90	-2,611.2	1,056.3	-13.014	51.508	170.92	0.1037	0.1246		
45	180	14,064.2	1,056.3	70.095	133.022	170.92	0.2058	0.2281		
	270	14,064.2	1,056.3	70.095	133.022	170.92	0.2058	0.2281		
32	0	-2,611.2	1,423.7	-13.014	71.804	172.643	0.1149	0.1378		
	90	-2,611.2	688.9	-13.014	34.676	133.69	0.0762	0.0922		
	180	14,064.2	1,423.7	70.095	153.318	172.643	0.2170	0.2413		
	270	14,064.2	688.9	70.095	116.19	133.69	0.1782	0.1957		

Seismic vacuum corroded, Moment = 124,809.8 kgf-m

Force attack angle °	Leg position °	Axial end load kg _f	Shear resisted kg _f	Axial f _a kg _f /cm ²	Bending f _{bx} kg _f /cm ²	Bending f _{by} kg _f /cm ²	Ratio H ₁₋₁	Ratio H ₁₋₂
	0	-6,413.9	10,370.8	-31.966	502.787	0	0.2327	0.2799
	90	44,355.0	1,194.5	221.062	315.688	273.355	0.4626	0.4982
	180	71,882.6	10,370.8	358.258	968.746	0	0.7531	0.8158
	270	44,355.0	1,194.5	221.062	315.688	273.355	0.4626	0.4982
	0	-6,413.9	5,782.7	-31.966	225.888	935.705	0.5664	0.6743
45	90	-6,413.9	5,782.7	-31.966	225.888	935.705	0.5664	0.6743
45	180	71,882.6	5,782.7	358.258	691.848	935.705	1.1057	1.2102
	270	71,882.6	5,782.7	358.258	691.848	935.705	1.1057	1.2102
	0	-6,413.9	7,794.0	-31.966	336.999	945.135	0.6277	0.7465
20	90	-6,413.9	3,771.4	-31.966	133.743	731.888	0.4162	0.4971
32	180	71,882.6	7,794.0	358.258	802.958	945.135	1.1675	1.2824
	270	71,882.6	3,771.4	358.258	599.702	731.888	0.9510	1.0330

Leg Calculations (AISC manual ninth edition)

Axial end load, P_1 (Based on vessel total bending moment acting at leg attachment elevation)

Allowable axial compressive stress, Fa (AISC chapter E)

$$\begin{split} C_c &= \sqrt{\frac{2 \cdot \pi^2 \cdot E}{F_y}} = \sqrt{\frac{2 \cdot \pi^2 \cdot 2,038,902}{2,531.05}} = 126.0993 \\ \\ \frac{K \cdot l}{r} &= \frac{1.5 \cdot 1,473.2}{67.56} = 32.7106 \\ \\ F_a &= \frac{1 \cdot \left(1 - \frac{(K \cdot l/r)^2}{2 \cdot C_c^2}\right) \cdot F_y}{\frac{5}{3} + \frac{3}{8} \cdot \frac{K \cdot l'r}{C_c} - \frac{(K \cdot l/r)^3}{8 \cdot C_c^3}} = \frac{1 \cdot \left(1 - \frac{(32.7106)^2}{2 \cdot 126.0993}\right) \cdot 2,531.05}{\frac{5}{3} + \frac{3}{8} \cdot \frac{32.7106}{126.0993} - \frac{(32.7106)^3}{8 \cdot 126.0993}} = 1,388.323 \text{ kg}_f/\text{cm}^2 \end{split}$$

Allowable axial compression and bending (AISC chapter H)

$$F_{ex}' = \frac{1 \cdot 12 \cdot \pi^2 \cdot E}{23 \cdot (K \cdot l/r)^2} = \frac{1 \cdot 12 \cdot \pi^2 \cdot 2,038,902}{23 \cdot (11.1015)^2} = 85,189.081 \text{ kg}_f/\text{cm}^2$$

$$F'_{ey} = \frac{1 \cdot 12 \cdot \pi^2 \cdot E}{23 \cdot (K \cdot l/r)^2} = \frac{1 \cdot 12 \cdot \pi^2 \cdot 2,038,902}{23 \cdot (32.7106)^2} = 9,812.355 \text{ kg}_f/\text{cm}^2$$

$$F_b = 1 \cdot 0.66 \cdot F_y = 1 \cdot 0.66 \cdot 2{,}531.05 = 1{,}670.493 \; \; \mathrm{kg}_f / \mathrm{cm}^2$$

Compressive axial stress

$$f_a = \frac{P_1}{A} = \frac{73,575.56}{200.6448} = \frac{366.696}{200.6448} \text{ kg}_f/\text{cm}^2$$

Bending stresses

$$f_{bx} = \frac{F \cdot \cos(\alpha) \cdot L}{I_x / C_x} + \frac{P_1 \cdot E_{cc}}{I_x / C_x} = \frac{7,972.71 \cdot \cos(32) \cdot 1,473.2}{100 \cdot 79,500.2/237.87} + \frac{73,575.56 \cdot 237.87}{100 \cdot 79,500.2/237.87} = \underline{821.69} \quad \text{kg}_f / \text{cm}^2$$

$$f_{by} = \frac{F \cdot \sin(\alpha) \cdot L}{I_y / C_y} = \frac{7,972.71 \cdot \sin(32) \cdot 1,473.2}{100 \cdot 9,157.09/142.24} = \underline{966.81} \quad \text{kg}_f / \text{cm}^2$$

AISC equation H₁₋₁

$$H_{1-1} = \frac{f_a}{F_a} + \frac{C_{mx} \cdot f_{bx}}{(1 - f_a/F'_{ex}) \cdot F_{bx}} + \frac{C_{my} \cdot f_{by}}{(1 - f_a/F'_{ey}) \cdot F_{by}}$$

= $\frac{366.696}{1,388.323} + \frac{0.85 \cdot 821.69}{(1 - 366.696/85,189.081) \cdot 1,670.493} + \frac{0.85 \cdot 966.81}{(1 - 366.696/9,812.355) \cdot 1,670.493}$
= $\underline{1.1951}$

AISC equation H₁₋₂

$$H_{1-2} = \frac{f_a}{0.6 \cdot 1 \cdot F_y} + \frac{f_{bx}}{F_{bx}} + \frac{f_{by}}{F_{by}} = \frac{366.696}{0.6 \cdot 1 \cdot 2,531.05} + \frac{821.69}{1,670.493} + \frac{966.81}{1,670.493} = \underline{1.3121}$$

Warning! 4, W 18x106 legs are NOT adequate.

Anchor bolts - Seismic operating new condition governs

Tensile loading per leg (1 bolt per leg)

$$R = \frac{4 \cdot M}{N \cdot BC} - \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{N} = \frac{4 \cdot 163,866.7}{4 \cdot 4.5848} - \frac{(0.6 - 0.14 \cdot 0.6) \cdot 169,007.99}{4} = 13,939.28 \text{ kg}_{f}$$

Required area per bolt

12

$$A_b = \frac{R}{S_b \cdot n} = \frac{13,939.28}{1,406.139 \cdot 1} = 9.9132 \text{ cm}^2$$

Area of a 1.875" series 8 threaded bolt (corroded) = 14.8645 cm^2

1.875" series 8 threaded bolts are satisfactory.

Check the leg to vessel fillet weld, Bednar 10.3, Seismic operating new governs

Note: continuous welding is assumed for all support leg fillet welds.

$$Z_w = \frac{2 \cdot b \cdot d + d^2}{3} = \frac{2 \cdot 28.448 \cdot 35.56 + 35.56^2}{3} = 1,095.9118 \text{ cm}^2$$
$$J_w = \frac{(b+2 \cdot d)^3}{12} - \frac{d^2 \cdot (b+d)^2}{b+2 \cdot d}$$

 $b+2\cdot d$

$$=\frac{(28.448+2\cdot 35.56)^{-3}}{12}-\frac{35.56^{-2}\cdot (28.448+35.56)^{-2}}{28.448+2\cdot 35.56}$$

= 30,225.79 cm³

$$E = \frac{d^2}{b+2 \cdot d} = \frac{355.6^2}{284.48 + 2 \cdot 355.6} = 127 \text{ mm}$$

 $\begin{array}{lll} \mbox{Governing weld load} & f_x = \cos(0) \cdot 10{,}608.62 = 10{,}608.62 & \mbox{kg}_f \\ \mbox{Governing weld load} & f_y = \sin(0) \cdot 10{,}608.62 = 0 & \mbox{kg}_f \end{array}$

$$f_1 = rac{P_1}{L_{
m weld}} = rac{73,575.56}{99.568}$$
 = 738.95 kg $_f/
m cm~(V_L~direct~shear)$

$$f_2 = \frac{f_y \cdot L_{\text{leg}} \cdot 0.5 \cdot b}{J_w} = \frac{0 \cdot 147.32 \cdot 0.5 \cdot 28.448}{30,225.7866} = 0 \quad \text{kg}_f/\text{cm} \; (\text{V}_{\text{L}} \text{ torsion shear})$$

$$f_3 = \frac{f_y}{L_{\text{weld}}} = \frac{0}{99.568} = 0 \text{ kg}_f/\text{cm} (V_c \text{ direct shear})$$

$$f_4 = \frac{f_y \cdot L_{\text{leg}} \cdot E}{J_w} = \frac{0 \cdot 147.32 \cdot 12.7}{30,225.7866} = 0 \quad \text{kg}_f/\text{cm} \ (\text{V}_{\text{c}} \text{ torsion shear})$$

$$f_6 = rac{f_x}{L_{
m weld}} = rac{10,608.62}{99.568}$$
 = 106.55 $\,\, {
m kg}_{\,f}/{
m cm}$ (Direct outward radial she

$$f = \sqrt{(f_1 + f_2)^2 + (f_3 + f_4)^2 + (f_5 + f_6)^2}$$

= $\sqrt{(738.95 + 0)^2 + (0 + 0)^2 + (3,023.06 + 106.55)^2}$
= 3,215.66 kg _f/cm (Resultant shear load)

Required leg to vessel fillet weld leg size (welded both sides + top)

$$t_w = \frac{f}{0.707 \cdot 0.55 \cdot S_a} = 100 \cdot \frac{321.57}{0.707 \cdot 0.55 \cdot 1,407.208} = \underline{58.77} \text{ mm}$$

The 60 mm leg to vessel attachment fillet weld size is adequate.

Base plate thickness check, AISC 3-106

$$f_p = \frac{P}{B \cdot N} = 100 \cdot \frac{81,542.48}{381 \cdot 584.2} = 36.635 \text{ kg}_f/\text{cm}^2$$

$$m = \frac{N - 0.95 \cdot d}{2} = \frac{584.2 - 0.95 \cdot 475.74}{2} = 66.12 \text{ mm}$$

$$n = \frac{B - 0.8 \cdot b}{2} = \frac{381 - 0.8 \cdot 284.48}{2} = 76.71 \text{ mm}$$

$$L = \frac{0.5 \cdot (d + b)}{2} - \sqrt{\frac{(0.5 \cdot (d + b))^2}{4} - \frac{P}{4 \cdot F_p}}$$

$$= \frac{0.5 \cdot (475.74 + 284.48)}{2} - \sqrt{\frac{(0.5 \cdot (475.74 + 284.48))^2}{4} - 100 \cdot \frac{81,542.48}{4 \cdot 116.569}}$$

$$= 53.55 \text{ mm}$$

$$t_b = \max(m,n,L) \cdot \sqrt{\frac{3 \cdot f_p}{S_b}} = 76.71 \cdot \sqrt{\frac{3 \cdot 36.635}{1,687.367}} = 19.58 \text{ mm}$$

The base plate thickness is adequate.

Check the leg to vessel attachment stresses, WRC 537 (Seismic vacuum corroded governs)

Applied Loads								
Radial Ioad, P _r	10,370.79 kg _f							
Circumferential moment, M _c	0 kg _f -m							
Circumferential shear, V _c	0 kg _f							
Longitudinal moment, M _L	32,376.9 kg _f -m							
Longitudinal shear, V _L	71,882.56 kg _f							
Torsion moment, M _t	0 kg _f -m							
Internal pressure, P	-0.8 bar							
Mean shell radius, R _m	2,258.48 mm							
Local shell thickness, T	13.76 mm							
Design factor	3							

Maximum stresses due to the applied loads at the leg edge (includes pressure)

$$\gamma = \frac{R_m}{T} = \frac{2,258.48}{13.76} = 164.1337$$

 $C_1 = 142.24, C_2 = 282.24$ mm

Local circumferential pressure stress $= \frac{P \cdot R_i}{T} = -133.513 \text{ kg}_f/\text{cm}^2$

Local longitudinal pressure stress $= rac{P \cdot R_i}{2 \cdot T} = -66.792 \, \mathrm{kg}_f / \mathrm{cm}^2$

Maximum combined stress $(P_L+P_b+Q)=-24{,}906.87~~{
m kg}_{\,f}/{
m cm}^{\,2}$

Allowable combined stress $(P_L+P_b+Q)=\pm 3\cdot S=\pm 4{,}221.63~~{
m kg}_f/{
m cm}^2$

WRC 537: The combined stress (P_L+P_b+Q) is excessive

Maximum local primary membrane stress $(P_L) = -7,738.55~~{
m kg}_f/{
m cm}^2$

Allowable local primary membrane stress $(P_L)=\pm 1.5\cdot S=\pm 2,\!110.81\,$ kg $_f/{
m cm}^2$

WRC 537: The local primary membrane stress (PL) is excessive

Stresses at the leg edge per WRC Bulletin 537										
Figure	Υ β		Au	A	Bu	BI	Cu	Cl	Du	DI
3C*	10.6851	0.1169	0	0	0	0	-356.597	-356.597	-356.597	-356.597
4C*	25.1974	0.1005	-840.871	-840.871	-840.871	-840.871	0	0	0	0
1C	0.0782	0.0817	0	0	0	0	-2,569.649	2,569.649	-2,569.649	2,569.649
2C-1	0.0521	0.0817	-1,713.662	1,713.662	-1,713.662	1,713.662	0	0	0	0
3A*	5.9051	0.0791	0	0	0	0	0	0	0	0
1A	0.0883	0.0813	0	0	0	0	0	0	0	0
3B*	18.1165	0.0995	-6,764.162	-6,764.162	6,764.162	6,764.162	0	0	0	0
1B-1	0.0291	0.0855	-15,454.665	15,454.665	15,454.665	-15,454.665	0	0	0	0
P	ressure stress	k	-133.513	-133.513	-133.513	-133.513	-133.513	-133.513	-133.513	-133.513
Total c	ircumferential s	stress	-24,906.873	9,429.78	19,530.781	-7,951.225	-3,059.759	2,079.539	-3,059.759	2,079.539
Primary memb	rane circumfer	ential stress*	-7,738.546	-7,738.546	5,789.778	-7,951.225 -3,059.759 5,789.778 -490.11 -419.451 0		-490.11	-490.11	-490.11
3C*	12.5689	0.1005	-419.451	-419.451	-419.451	-419.451	0	0	0	0
4C*	24.0721	0.1169	0	0	0	0	-803.327	-803.327	-803.327	-803.327
1C-1	0.063	0.1034	-2,070.681	2,070.681	-2,070.681	2,070.681	0	0	0	0
2C	0.0375	0.1034	0	0	0	0	-1,231.426	1,231.426	-1,231.426	1,231.426
4A*	10.3252	0.0791	0	0	0	0	0	0	0	0
2A	0.0363	0.0966	0	0	0	0	0	0	0	0
4B*	6.6778	0.0995	-3,904.989	-3,904.989	3,904.989	3,904.989	0	0	0	0
2B-1	0.0315	0.1013	-14,107.161	14,107.161	14,107.161	-14,107.161	0	0	0	0
Р	ressure stress	*	-66.792	-66.792	-66.792	-66.792	-66.792	-66.792	-66.792	-66.792
Total	longitudinal str	ress	-20,569.074	11,786.61	15,455.227	-8,617.735	-2,101.545	361.307	-2,101.545	361.307
Primary men	brane longitud	linal stress*	-4,391.232	-4,391.232	3,418.746	3,418.746	-870.119	-870.119	-870.119	-870.119
	Shear from M _t		0	0	0	0	0	0	0	0
Ci	rc shear from V	c	0	0	0	0	0	0	0	0
Lo	ng shear from \	/L	0	0	0	0	-462.76	-462.76	462.76	462.76
To	tal Shear stres	s	0	0	0	0	-462.76	-462.76	462.76	462.76
Combir	ned stress (P _L +	P _b +Q)	-24,906.873	11,786.61	19,530.781	-8,617.735	-3,246.775	2,196.249	-3,246.775	2,196.249
* denotes primary stress.							3	*	3	

Straight Flange on Bottom Head

ASME Section VIII Division 1, 2021 Edition Metric							
Com	ponent	Cylinder					
Ма	terial	SA-516 70 (II-D Metric p. 20, In. 45)					
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP			
No	No	No	No	No			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
Int	ernal	7	40	5			
Ext	ternal	0.8	40	5			
		Static Liquio	d Head				
Cor	dition	P _s (bar)	H _s (mm)	SG			
Operating		0.84	8,714.3	0.98			
Test horizontal		0.44	4,500	1			
		Dimensio	ons				
Inner I	Diameter	4,500 mm					
Le	ngth	50.8 mm					
Nominal	Thickness	17 mm					
Corrosion	Inner	1.6 mm					
Corrosion	Outer	1.64 mm					
		Weight and C	apacity				
		Weig	Capacity (liters)				
New		S	5.99	807.94			
Cor	roded		77.7	809.09			
Radiography							
Longitu	dinal seam	Seamless No RT					
Top Circum	ferential seam	Full UW-11(a) Type 2					

Results Summary							
Governing condition	Internal pressure						
Minimum thickness per UG-16	1.5 mm + 3.24 mm = 4.74 mm						
Design thickness due to internal pressure (t)	<u>16.07 mm</u>						
Design thickness due to external pressure (t _e)	<u>15.93 mm</u>						
Design thickness due to combined loadings + corrosion	<u>10.44 mm</u>						
Maximum allowable working pressure (MAWP)	7.57 bar						
Maximum allowable pressure (MAP)	<u>10.38 bar</u>						
Maximum allowable external pressure (MAEP)	<u>0.97 bar</u>						
Rated MDMT	-105 °C						

UCS-66 Material Toughness Requirements							
$t_r = rac{0.84\cdot 2,251.6}{1,380\cdot 1 - 0.6\cdot 0.84} =$	1.37 mm						
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.37 \cdot 1}{17 - 3.24} =$	0.0993						
$egin{array}{llllllllllllllllllllllllllllllllllll$	0.0563						
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C						
Material is exempt from impact testing at the Design MDMT of 5°C.							

 $t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{7.84 \cdot 2,251.6}{1,380 \cdot 1.00 - 0.60 \cdot 7.84} + 3.24 = \underline{16.07} \text{ mm}$

Maximum allowable working pressure, (at 40 °C) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{1,380 \cdot 1.00 \cdot 13.76}{2,251.6 + 0.60 \cdot 13.76} - 0.84 = \underline{7.57} \text{ bar}$$

Maximum allowable pressure, (at 21.11 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{1,380 \cdot 1.00 \cdot 17}{2,250 + 0.60 \cdot 17} = \underline{10.38}$ bar

External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,297.99}{4,534} = 0.9479$$
$$\frac{D_o}{t} = \frac{4,534}{12.69} = 357.2703$$

From table G: A = 0.000215

From table CS-2 Metric: $B = 218.5894 \text{ kg/cm}^2 (214.36 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 214.36}{3 \cdot (4,534/12.69)} = 0.8 ext{ bar}$$

Design thickness for external pressure $P_a = 0.8$ bar

 $t_a = t + \text{Corrosion} = 12.69 + 3.24 = 15.93 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 40 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{4,297.99}{4,534} = 0.9479$$
$$\frac{D_o}{t} = \frac{4,534}{13.76} = 329.5058$$

From table G: A = 0.000241

From table CS-2 Metric: $B = 245.2108 \text{ kg/cm}^2 (240.4692 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 240.47}{3 \cdot (4,534/13.76)} = rac{0.97}{0.97} \ {
m bar}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 17}{2,258.5}\right) \cdot \left(1 - \frac{2,258.5}{\infty}\right) = 0.3764\%$$

The extreme fiber elongation does not exceed 5%.

Thickness Required Due to Pressure + External Loads								
Condition	Pressure P (bar)	Allowable Stress Stress Increas	Allowable Stress Before UG-23 Stress Increase (kg/cm ²)		Corrosion	Load	Req'd Thk Due	Req'd Thk Due to
	r (bai)	s _t	S _c	(0)	C (IIIII)			compression (mm)
Operating Hot & Corroded	7	1 407 2	760.8	40	3.24	Wind	<u>7.13</u>	<u>6.81</u>
	, í	1,407.2	<u>100.0</u>	40	0.24	Seismic	<u>7.2</u>	<u>6.75</u>
Operating Hot & New	7	1 407 2	042.2	40	0	Wind	<u>7.13</u>	<u>6.81</u>
	,	1,407.2	040.0	40		Seismic	<u>7.2</u>	<u>6.74</u>
Hot Shut Down, Corroded	0	1,407.2	<u>769.8</u>	40	3.24	Wind	<u>0.79</u>	<u>0.48</u>
The only Down, Conded						Seismic	<u>0.86</u>	<u>0.41</u>
Hot Shut Down, Now	0	1,407.2	<u>843.3</u>	40	0	Wind	<u>0.79</u>	<u>0.48</u>
The Shut Down, New	0					Seismic	<u>0.86</u>	<u>0.41</u>
Empty Corrodod	0	1 407 2	760.9	21.11	2.24	Wind	<u>0.02</u>	<u>0.01</u>
	0	1,407.2	<u>709.0</u>	21.11	5.24	Seismic	<u>0.02</u>	<u>0.01</u>
Empty Now	0	1,407.2	<u>843.3</u>	21.11	0	Wind	<u>0.02</u>	<u>0.01</u>
						Seismic	<u>0.02</u>	<u>0.01</u>
Veeuum	m -0.8 1,407.2 <u>769.8</u> 40	4 407.0	700.0	10	0.04	Wind	<u>0.07</u>	<u>0.41</u>
		40	3.24	Seismic	<u>0.14</u>	<u>0.52</u>		
Hot Shut Down, Corroded, Weight & Eccentric Moments Only	0	1,407.2	<u>769.8</u>	40	3.24	Weight	<u>0.79</u>	<u>0.79</u>

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC}$, (table CS-2 Metric)

$$A = rac{0.125}{R_o/t} = rac{0.125}{2,267/13.76} = 0.000759$$

 $B\,=769.8\,$ kg/cm 2

$$S = rac{1,407.2}{1.00} = 1,407.2 \, {
m kg/cm^{-2}}$$

 $S_{cHC} = \min(B,S) = \frac{769.8 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Hot and New- S_{cHN}, (table CS-2 Metric)

$$A = rac{0.125}{R_o/t} = rac{0.125}{2,267/17} = 0.000937$$

 $B\,=843.3\,$ kg/cm 2

$$S = {1,407.2 \over 1.00} = 1,407.2 \, {
m kg/cm^2}$$

 $S_{cHN} = \min(B,S) = \frac{843.3 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table CS-2 Metric)

$$A = rac{0.125}{R_o/t} = rac{0.125}{2,267/17} = 0.000937$$

 $B\,=843.3\,$ kg/cm 2

$$S = {1.407.2 \over 1.00} = 1.407.2 \, {
m kg/cm}^2$$

 $S_{cCN} = \min(B,S) = 843.3 \text{ kg/cm}^2$

Allowable Compressive Stress, Cold and Corroded- $S_{cCC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,267/13.76} = 0.000759$$

$$B = 769.8$$
 kg/cm²

$$S = \frac{1{,}407.2}{1.00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{c\mathbb{C}} = \min(B,S) = \frac{769.8 \text{ kg/cm}^2}{2}$

Allowable Compressive Stress, Vacuum and Corroded- $\rm S_{cVC}$, (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{2,\!267/13.76} = 0.000759$$

 $B\,=769.8\,$ kg/cm 2

$$S = \frac{1{,}407.2}{1.00} = 1{,}407.2 \; \text{ kg/cm}^2$$

 $S_{cVC} = \min(B,S) = \frac{769.8 \text{ kg/cm}^2}{2}$

Operating, Hot & Corroded, Wind, Top Seam
$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.251.6}{2 \cdot 1.380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.34 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 18.2 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{-142,530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.79 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 6.34 + 0 - (-0.79) \\ &= \frac{7.13 \text{ mm}}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.48 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0 + (-0.48) - (6.34)| \\ &= 6.81 \text{ mm} \end{split}$$

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (13.76 - 0 + (-0.79))}{2,251.6 - 0.40 \cdot (13.76 - 0 + (-0.79))}$$
$$= 14.34 \text{ bar}$$

Operating, Hot & New, Wind, Top Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2250}{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 18.2 \frac{N}{\pi \cdot 2,258.5 \cdot 2 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{-142,800.7}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.79 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 6.33 + 0 - (-0.79) \\ &= 7.13 \text{ mm} \\ t_{w} c &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot -142,800.7}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.48 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0 + (-0.48) - (6.33)| \\ &= 6.81 \text{ mm} \end{split}$$

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (17 - 0 + (-0.79))}{2,250 - 0.40 \cdot (17 - 0 + (-0.79))}$$
$$= 17.94 \text{ bar}$$

Hot Shut Down, Corroded, Wind, Top Seam

$$\begin{array}{l} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_r \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 18.2 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_w &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_r \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{-142,530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.79 \text{ mm} \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.79) \\ &= 0.79 \text{ mm} \\ t_w c &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.60 \cdot -142,530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.48 \text{ mm} \\ t_c &= |t_{nc} + t_{uc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.48) - (0)| \\ &= 0.48 \text{ mm} \end{array}$$

$$\begin{split} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 18.2 \frac{M}{\pi \cdot 2,258.5^{-2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_w &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (Weight) \\ &= \frac{-142,800.7}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.79 \text{ mm} \\ t_t &= t_p + t_m - t_w & (total required, tensile) \\ &= 0 + 0 - (-0.79) \\ &= 0.79 \text{ mm} \\ t_w c &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (Weight) \\ &= \frac{0.60 \cdot -142,800.7}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.48 \text{ mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (total, net tensile) \\ &= |0 + (-0.48) - (0)| \\ &= 0.48 \text{ mm} \\ \end{split}$$

$$\begin{array}{l} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{1} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 18.2 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{-3,500}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.02 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.02) \\ &= 0.02 \text{ mm} \\ t_{w} c &= \frac{0.60 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.002 \text{ mm}}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.01 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.01) - (0)| \\ &= 0.01 \text{ mm} \end{array}$$

$$\begin{split} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 18.2 \frac{M}{\pi \cdot 2.258.5^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_w &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{-4.004.3}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.02 \text{ mm} \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.02) \\ &= 0.02 \text{ mm} \\ t_w c &= \frac{-0.6 \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{-0.02 \text{ mm}}{2 \cdot \pi \cdot 2.258.5 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.01 \text{ mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.01) - (0)| \\ &= 0.01 \text{ mm} \\ \\ \text{Vacuum, Wind, Top Seam} \end{split}$$

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{c} \cdot E_{c} + 0.40 \cdot |P|} \qquad (Pressure) \\ &= \frac{-08 \cdot 2.251.6}{2 \cdot 1.380 \cdot 100 \cdot 0.90 + 0.40 \cdot |0.8|} \\ &= -0.73 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (bending) \\ &= 18.2 \frac{2}{\pi \cdot 2.258.48} \frac{2}{\cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{142.530.9}{2 \cdot \pi \cdot 2.258.48} \frac{2}{\cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.79 \text{ mm} \\ t_{1} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= -0.73 + 0 - (-0.79) \\ &= \frac{0.07 \text{ mm}}{2 \cdot 5 \cdot S_{c} \cdot K_{s} \cdot 4.40 \cdot |P|} \qquad (Pressure) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 754.91 \cdot 1.00 + 0.40 \cdot 0.8|} \\ &= -1.19 \text{ mm} \\ t_{mc} &= \frac{M}{\pi \cdot R_{w}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (bending) \\ &= \frac{182}{\pi \cdot 2.258.48} \frac{2}{\cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{wc} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (bending) \\ &= \frac{182}{\pi \cdot 2.258.48} \frac{2}{\cdot 754.91 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{wc} &= \frac{0.6 \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.60 \cdot 0.142,530.9}{2 \cdot \pi \cdot 2.258.48} \frac{2}{\cdot 754.91 \cdot 1.00} \cdot 98.0005 \\ &= -0.78 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0 + (-0.78) - (-1.19) \end{aligned}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 754.91 \cdot 1.00 \cdot (13.76 - 0 - 0.78)}{2,251.6 - 0.40 \cdot (13.76 - 0 - 0.78)}$$
$$= 9.78 \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Top Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{0}{\pi \cdot 2,258.48^{-2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{-142,530.9}{2 \cdot \pi \cdot 2,258.48 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.79 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.79) \\ &= 0.79 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.79) - (0)| \\ &= 0.79 \text{ mm} \end{split}$$

Operating, Hot & Corroded, Seismic, Top Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot s_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{7 \cdot 2.251.6}{2 \cdot 1.380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.34 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot s_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 195.7 \frac{1}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{1.08 \cdot -142,530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.86 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 6.34 + 0 - (-0.86) \\ &= 7.2 \text{ mm} \\ t_{w} c &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.52 \cdot -142,530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.41 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0 + (-0.41) - (6.34)| \\ &= 6.75 \text{ mm} \end{split}$$

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (13.76 - 0 + (-0.86))}{2,251.6 - 0.40 \cdot (13.76 - 0 + (-0.86))}$$
$$= \underline{14.26} \text{ bar}$$

Operating, Hot & New, Seismic, Top Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{T \cdot 2250}{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |7|} \\ &= 6.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= 206.1 \frac{\pi}{\pi \cdot 2,258.5} \frac{2}{2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{1.08 \cdot .142,800.7}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.86 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 6.33 + 0 - (-0.86) \\ &= 7.2 \text{ mm} \\ t_{w} c &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{0.52 \cdot .142,800.7}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.41 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0 + (-0.41) - (6.33)| \\ &= 6.74 \text{ mm} \end{split}$$

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1,380 \cdot 1.00 \cdot 0.90 \cdot (17 - 0 + (-0.86))}{2,250 - 0.40 \cdot (17 - 0 + (-0.86))}$$
$$= 17.87 \text{ bar}$$

Hot Shut Down, Corroded, Seismic, Top Seam

$$\begin{split} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 195.7 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_w &= \frac{(1+0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 142,530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.86 \text{ mm} \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.86) \\ &= 0.86 \text{ mm} \\ t_w c &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.52 \cdot 142,530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.41 \text{ mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.41) - (0)| \\ &= 0.41 \text{ mm} \\ \\ \text{Hot Shut Down, New, Seismic, Top Seam} \end{split}$$

$$\begin{split} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 206.1 \frac{M}{\pi \cdot 2,258.5^{-2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_w &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{108 \cdot .142,800.7}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot .98.0665 \\ &= -0.86 \text{ mm} \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.86) \\ &= 0.86 \text{ mm} \\ t_w c &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.52 \cdot .142,800.7}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot .98.0665 \\ &= -0.41 \text{ mm} \\ t_c &= |t_m + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.41) - (0)| \\ &= 0.41 \text{ mm} \\ \\ \text{Empty, Corroded, Seismic, Top Seam} \end{split}$$

$$\begin{split} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 76.8 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_w &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 3.500}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.02 \text{ mm} \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.02) \\ &= 0.02 \text{ mm} \\ t_w c &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_1 \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.52 \cdot 3.500}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.01 \text{ mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.01) - (0)| \\ &= 0.01 \text{ mm} \\ \\ \text{Empty, New, Seismic, Top Seam} \end{split}$$

$$\begin{split} t_p &= 0 \text{ mm} & (\text{Pressure}) \\ t_m &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{bending}) \\ &= 87.7 \frac{M}{\pi \cdot 2,258.5^{-2} \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_w &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{1.08 \cdot 4,004.3}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.02 \text{ mm} \\ t_t &= t_p + t_m - t_w & (\text{total required, tensile}) \\ &= 0 + 0 - (-0.02) \\ &= 0.02 \text{ mm} \\ t_w c &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{0.52 \cdot 4,004.3}{2 \cdot \pi \cdot 2,258.5 \cdot 1,380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.01 \text{ mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| & (\text{total, net tensile}) \\ &= |0 + (-0.01) - (0)| \\ &= 0.01 \text{ mm} \\ \\ \text{Vacuum, Seismic, Top Seam} \end{split}$$

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{v} \cdot K_{v} \cdot E_{v} + 0.40 \cdot |P|} \qquad (Pressure) \\ &= \frac{-08 \cdot 2.251.6}{2 \cdot 1.380 \cdot 1.00 \cdot 0.90 + 0.40 \cdot |0.8|} \\ &= -0.73 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{h}^{2} \cdot S_{v} \cdot K_{v} \cdot E_{v}} \cdot MetricFactor \qquad (bending) \\ &= 195.7 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{(1 + 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{v} \cdot K_{s} \cdot E_{v}} \cdot MetricFactor \qquad (Weight) \\ &= \frac{1.08 \cdot 1.42 \cdot 530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= -0.86 \text{ mm} \\ t_{v} &= \frac{1.08 \cdot 142 \cdot 530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 1.380 \cdot 1.00 \cdot 0.90} \cdot 98.0665 \\ &= 0.14 \text{ mm} \\ t_{w} &= \frac{P \cdot R}{2 \cdot S_{v} \cdot K_{s} + 0.40 \cdot |P|} \qquad (pressure) \\ &= \frac{-0.8 \cdot 2.251.6}{2 \cdot 754.91 \cdot 1.00 + 0.40 \cdot |0.8|} \\ &= -1.19 \text{ mm} \\ t_{mc} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{v} \cdot K_{s}} \cdot MetricFactor \qquad (bending) \\ &= 195.7 \frac{\pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00}{2 \cdot \pi \cdot R_{m} \cdot S_{v} \cdot K_{s}} \cdot MetricFactor \qquad (bending) \\ &= 195.7 \frac{M}{\pi \cdot 2.258.48^{-2} \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0 \text{ mm} \\ t_{w} c &= \frac{(0.6 - 0.14 \cdot S_{DS}) \cdot W}{2 \cdot \pi \cdot R_{m} \cdot S_{v} \cdot K_{s}} \cdot MetricFactor \qquad (Weight) \\ &= \frac{0.52 \cdot 142 \cdot 530.9}{2 \cdot \pi \cdot 2.258.48 \cdot 754.91 \cdot 1.00} \cdot 98.0665 \\ &= 0.67 \text{ mm} \\ t_{0} c &= t_{wc} - t_{yc} \qquad (total required, compressive) \\ &= 0 + (-0.67) - (-1.19) \end{aligned}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 754.91 \cdot 1.00 \cdot (13.76 - 0 - 0.67)}{2,251.6 - 0.40 \cdot (13.76 - 0 - 0.67)}$$

= <u>9.7</u> bar

Bottom Head

	ASME Sec	tion VIII Divisio	n 1, 2021 Edition M	letric	
Component		F&D Head			
Material		SA-516 70 (II-D Metric p. 20, In. 45)			
Attached To		Cylinder #4			
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP	
No	No	No	No	No	
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)	
Internal		7	40	5	
External		0.8	40	5	
Static Liquid Head					
Condition		P _s (bar)	H _s (mm)	SG	
Operating		0.91	9,477.92	0.98	
Test horizontal		0.44	4,500	1	
Dimensions					
Inner Diameter		4,500 mm			
Crown Radius L		4,500 mm			
Knuckle Radius r		270 mm			
Minimum Thickness		26.06 mm			
Corrosion	Inner	1.6 mm			
	Outer	1.64 mm			
Length L _{sf}		50.8 mm			
Nominal Thickness t _{sf}		17 mm			
Weight and Capacity					
		Weight (kg) ¹		Capacity (liters) ¹	
New		4,004.32		8,189.03	
Corroded		3,500.02		8,220.36	
Radiography					
Category A joints		Seamless No RT			
Head to shell seam		Full UW-11(a) Type 2			
includes straight flange					

Results Summary					
Governing condition	internal pressure				
Minimum thickness per UG-16	1.5 mm + 3.24 mm = 4.74 mm				
Design thickness due to internal pressure (t)	<u>26.06</u> mm				
Design thickness due to external pressure (t_e)	<u>14.7</u> mm				
Maximum allowable working pressure (MAWP)	<u>7</u> bar				
Maximum allowable pressure (MAP)	<u>9.02</u> bar				
Maximum allowable external pressure (MAEP)	<u>3.17</u> bar				
Straight Flange governs MDMT	-105°C				

Note: Endnote 88 used to determine allowable stress.

Design thickness for internal pressure, (Corroded at 40 °C) Appendix 1-4(d)

 $t = \frac{P \cdot L \cdot M}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{7.91 \cdot 4,501.6 \cdot 1.7678}{2 \cdot 1,380 \cdot 1 - 0.2 \cdot 7.91} + 3.24 = \underline{26.06} \text{ mm}$

Maximum allowable working pressure, (Corroded at 40 °C) Appendix 1-4(d)

 $P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 1,380 \cdot 1 \cdot 22.82}{4,501.6 \cdot 1.7678 + 0.2 \cdot 22.82} - 0.91 = \underline{7} \text{ bar}$

Maximum allowable pressure, (New at 21.11 °C) Appendix 1-4(d)

$$P = \frac{2 \cdot S \cdot E \cdot t}{L \cdot M + 0.2 \cdot t} - P_s = \frac{2 \cdot 1,380 \cdot 1 \cdot 26.06}{4,500 \cdot 1.7706 + 0.2 \cdot 26.06} - 0 = \underline{9.02} \text{ bar}$$

Design thickness for external pressure, (Corroded at 40 °C) UG-33(e)

Equivalent outside spherical radius R_o = Outside crown radius = 4,524.42 mm

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{4,524.42 \ / \ 11.46} = 0.000317$$

From Table CS-2 Metric: B = $322.1082 \text{ kg}_{\text{f}}/\text{cm}^2$

$$P_a = \frac{B}{R_o \ / \ t} = \frac{315.8802}{4,524.42 \ / \ 11.46} = 0.8 \ \ {
m bar}$$

t = 11.46 mm + Corrosion = 11.46 mm + 3.24 mm = 14.7 mm

The head external pressure design thickness (te) is 14.7 mm.

Maximum Allowable External Pressure, (Corroded at 40 °C) UG-33(e)

Equivalent outside spherical radius R_o = Outside crown radius = 4,524.42 mm

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{4,524.42 \ / \ 22.82} = 0.00063$$

From Table CS-2 Metric: B = $640.072 \text{ kg}_{\text{f}}/\text{cm}^2$

 $P_a = {B \over R_o \ / \ t} = {627.6962 \over 4,524.42 \ / \ 22.82} = 3.166 \ {
m bar}$

The maximum allowable external pressure (MAEP) is 3.17 bar.

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 17}{278.5}\right) \cdot \left(1 - \frac{278.5}{\infty}\right) = 4.5781\%$$

The extreme fiber elongation does not exceed 5%.