Your Company Name

Your Company Address

COMPRESS Pressure Vessel Design Calculations

Item: Vessel No: Customer: Contract: Designer: Date: Tuesday, May 30, 2023

Table of Contents

General Arrangement Drawing	1
Deficiencies Summary	3
Nozzle Schedule	4
Nozzle Summary	6
Pressure Summary	7
Settings Summary	9
Radiography Summary	11
Thickness Summary	13
Weight Summary	14
Long Seam Summary	15
Hydrostatic Test	17
Vacuum Summary	18
Foundation Load Summary	19
Bill of Materials	20
Wind Code	22
Data Sheet note 1.6 - piping approx.	23
Lateral Force #1	24
Misc Weight	25
Ellipsoidal Head #2	26
Straight Flange on Ellipsoidal Head #2	29
24" 300# RFWN MANWAY (M1)	33
2" 300# RFWN STEAM OUT (N6A)	37
Nozzle #26 (N26)	41
Cylinder #1	44
20" 300# RFWN VAPOUR OUTLET (N2)	48
16" 300# RFWN HYDROCARBON OUTLET (N3)	52
8" 300# RFWN VENT (N4)	56
3" 300# RFWN LG/LT (SIS) BRIDLE (J2A)	60
Cylinder #2	64
60" BOOT (BOOT)	68
2" 300# RFLWN LEVEL TRANS (J3A)	75

2" 300# RFLWN LEVEL TRANS (J3B)	78
2" 300# RFLWN LEVEL TRANS (J4A)	81
2" 300# RFLWN LEVEL TRANS (J4B)	84
Straight Flange on Ellipsoidal Head #3	87
Ellipsoidal Head #3	89
4" 300# RFWN WATER OUTLET (N7)	91
Lifting Lug - 1	94
Cylinder #3	104
Nozzle #25 (N25)	108
Cylinder #4	114
Cylinder #5	118
Saddle #1	122
24" 300# RFWN FEED INLET (N1)	146
4" 300# RFWN DRAIN (N5)	150
4" 300# RFWN VENT (N8)	154
Lifting Lug - 2	158
Straight Flange on Ellipsoidal Head #1	168
Ellipsoidal Head #1	172
24" 300# RFWN MANWAY (M2)	175
2" 300# RFWN STEAM OUT (N6B)	179

ESIGN DATA	250 psi	15 psi	332.46 psi	600 °F	-49 °F	0.25 "	RT4	HT		timated Weights	Wet: 212,074 lb		107,171 ID (Upen), 340,164 ID (Test) 104 902 Ib (Open), 332 684 Ib (Test)	Materials	SA-51670		SA516-70N						cators Inc		Ington BIVG.	X, 75204				General Arrangement	VG NO
D	Design Pressure	Vacuum Pressure	Test Pressure (Shop)	Design Temperature	MDMT	Corrosion Allowance	Radiography	PWHT		Est	Dry: 212,074 lb		 vveight at left saddle: vveight at right saddle: 	0	Cylinder(s):	Transition(s):	Support						ARC Fahri		ZeUU Wash	Dallas, T					.10
					36.00" 64.00"	200) {			7			ディ ア [16.000 23.000	250.50" 24.00	ī								0 03/22/2007 FOR APPROVAL 01 11/2	REV DATE DESCRIPTION
			R12 R2" 041	500 00	294.00"						Cooooo	600 900		Neocopage 1							107.50" 392.00 ⁻		NPS 24 WN Class 300	NPS 4 WN Class 300	NPS 4 WN Class 300	NPS 24 WN Class 300	NPS 60 WN Class 400	NPS 4 WN-Class 500 NDS 21 WN Class 300	NPS 2 LWN Class 300	NPS 2 LWN Class 300	FLANGE
				*	49.00" 36.00"			{ = -				ĴĽ						(142/007	108.00		24" 300# RFWN MAN 24 OD × 1.25	4" 300# RFWN VENT NPS 4 Sch 160	4" 300# RFWN DRAIN NPS 4 Sch 160	24" 300# RFWN FEED 24 0D x 1.25	Nozzle #25 NPS 60 (Thk = 1.250")	4: 300# RF WN WATE NPS 4 501 150	2" 300# RFLWN LEVE 3.31 OD × 0.055	2" 300# RFLWN LEVE 3.31 OD x 0.655	NOZZLE SIZE & SCH
																							M2	N8	9N5	M	N25	N	14A	J3B	MARK
												(D									NPS 2 LWN Class 300		NPS 3 WN Class 300	NPS 8 WN Class 300	NPS 16 WN Class 300	INPO ZU WIN CIBSS 300	NPS 2 WN Class 300	NPS 24 WN Class 300	FLANGE
	NITNR					120.07			170.6D" D	$\boldsymbol{\gamma}$	Ē	_			.20211	Ţ_	•	ī					3.31 OD × 0.655	64 OD x 2	NPS 3 Sch 160	NPS 8 Sch 120	NPS 16 Sch 100	26.00 × 6	NPS 2 XXS	24 OD × 1.25	SIZE & SCH
	(MONNAY		.0						≡ (•		/		- - - - - - - -		_		150.00"	2	706				 2" 300# RFLWN LEVE	60" BOOT	3" 300# RFWN LG/LT (8" 300# RFWN VENT	16" 300# RFWN HY	VI 30U# KFWIN VAP	2" 300# RFWN STEAM	24" 300# RFWN MAN	NOZZLE
								•		153.00	6				_	00.881							13A	BOOT	J2A	N4	23	ZN	N6A	M 1	MARK

Deficiencies Summary

Deficiencies for 24" 300# RFWN MANWAY (M1)

Overlapping limits of reinforcement between nozzles M1 and N26 detected - user intervention may be required. Overlapping limits of reinforcement between nozzles M1 and N26 detected - user intervention may be required. (MAP Condition)

Deficiencies for 3" 300# RFWN LG/LT (SIS) BRIDLE (J2A)

UG-36(a)(1): More analysis is required. Additional reinforcement may be necessary as the long opening dimension exceeds twice the short dimension.

Deficiencies for <u>Lifting Lug - 1</u> The local stresses in the WRC 107 calculation are excessive.

Deficiencies for Lifting Lug - 2 The local stresses in the WRC 107 calculation are excessive.

Deficiencies for <u>Nozzle #25 (N25)</u> Bolt MDMT is only -40°F: -49°F is required Large opening is outside of the scope of Appendix 1-7(b) as an internal projection is specified. Either an Appendix 1-10 or separate U-2(g) analysis is required.

Nozzle assembly MDMT is only -4.3°F: -49°F is required

Deficiencies for <u>Nozzle #26 (N26)</u> Overlapping limits of reinforcement between nozzles N26 and M1 detected - user intervention may be required. Nozzle assembly MDMT is only 19.1°F: -49°F is required The inner fillet weld ($Leg_{41} = 0.3571$ in) is less than the minimum of 0.3571 in.

Overlapping limits of reinforcement between nozzles N26 and M1 detected - user intervention may be required. (MAP Condition) UG-43(g): Thread engagement (1.63") is insufficient (require 1.6447").

Nozzle Schedule

			Spe	cifications												
Nozzle mark	Identifier	Size		Materials	Impact Tested	Normalized	Fine Grain	Flange	Blind							
	60" BOOT	64 OD x 2	Nozzle	SA-516 70	Yes	Yes	Yes	N/A	No							
воот	00 0001	04 00 72	Pad	SA-516 70	Yes	Yes	Yes		NO							
	Ellipsoidal Head #3	ID = 60" x Thk = 1.5"	Ellipsoidal Head	SA-516 70	Yes	Yes	Yes	N/A	N/A							
J2A	3" 300# RFWN LG/LT (SIS)	NPS 3 Sch 160	Nozzle	SA-333 6 Wld & smls pipe	No	No	No	NPS 3 Class 300	No							
	BRIDLE		Pad	SA-516 70	Yes	Yes	Yes	CI.1								
<u>J3A</u>	2" 300# RFLWN LEVEL TRANS	3.31 OD x 0.655	Nozzle	SA-350 LF2 CI 1	No	No	No	NPS 2 Class 300 LWN A350 LF2 CI.1	No							
J3B	2" 300# RFLWN LEVEL TRANS	3.31 OD x 0.655	Nozzle	SA-350 LF2 CI 1	No	No	No	NPS 2 Class 300 LWN A350 LF2 Cl.1	No							
<u>J4A</u>	2" 300# RFLWN LEVEL TRANS	3.31 OD x 0.655	Nozzle	SA-350 LF2 CI 1	No	No	No	NPS 2 Class 300 LWN A350 LF2 Cl.1	No							
<u>J4B</u>	2" 300# RFLWN LEVEL TRANS	3.31 OD x 0.655	Nozzle	SA-350 LF2 CI 1	No	No	No	NPS 2 Class 300 LWN A350 LF2 Cl.1	No							
			Nozzle	SA-516 70	Yes	Yes	Yes	NPS 24 Class	NPS 24 Class							
<u>M1</u>	24" 300# RFWN MANWAY	24 OD x 1.25	Pad	SA-516 70	Yes	Yes	Yes	300 WN A350 LF2 CI.1	300 A350 LF2 Cl.1							
			Nozzle	SA-516 70	Yes	Yes	Yes	NPS 24 Class	NPS 24 Class							
<u>M2</u>	24" 300# RFWN MANWAY	24 OD x 1.25	Pad	SA-516 70	Yes	Yes	Yes	300 WN A350 LF2 CI.1	300 A350 LF2 CI.1							
			Nozzle	SA-516 70	Yes	Yes	Yes	NPS 24 Class								
<u>N1</u>	24" 300# RFWN FEED INLET	24 OD x 1.25	Pad	SA-516 70	Yes	Yes	Yes	300 WN A350 LF2 CI.1	No							
										Nozzle	SA-516 70	No	No	No	NPS 20 Class	
<u>N2</u>	20" 300# RFWN VAPOUR OUTLET	20 OD x 1	Pad	SA-516 70	Yes	Yes	Yes	300 WN A350 LF2 CI.1	No							
			Nozzle	SA-106 B Smls pipe	No	No	No	NPS 60 Class	NPS 60 Class							
<u>N25</u>	Nozzle #25	NPS 60 (Thk = 1.250")	Pad	SA-516 70	No	No	No	400 WN A105 Series A	400 A105 Series A							
<u>N26</u>	Nozzle #26	36 OD x 6	Nozzle	SA-106 B Smls pipe	No	No	No	N/A	NPS 24 Class 300 A105							
<u>N3</u>	16" 300# RFWN HYDROCARBON	NPS 16 Sch 100	Nozzle	SA-333 6 Wld & smls pipe	No	No	No	NPS 16 Class 300	No							
	OUTLET		Pad	SA-516 70	Yes	Yes	Yes	CI.1								
<u>N4</u>	8" 300# RFWN VENT	NPS 8 Sch 120	Nozzle	SA-333 6 Wld & smls pipe	No	No	No	NPS 8 Class 300	No							
			Pad	SA-516 70	Yes	Yes	Yes	CI.1								
<u>N5</u>	4" 300# RFWN DRAIN	NPS 4 Sch 160	Nozzle	SA-333 6 Wld & smls pipe	No	No	No	NPS 4 Class 300 WN A350 LE2	No							
			Pad	SA-516 70	Yes	Yes	Yes	Cl.1								
<u>N6A</u>	2" 300# RFWN STEAM OUT	NPS 2 XXS	Nozzle	SA-333 6 Wld & smls pipe	No	No	No	NPS 2 Class 300 WN A350 I F2	No							
			Pad SA-		Yes	Yes	Yes	CI.1								

N6B	2" 300# RFWN STEAM OUT	NPS 2 XXS	Nozzle	SA-333 6 Wld & smls pipe	No	No	No	NPS 2 Class 300	No	
			Pad	SA-516 70	Yes	Yes	Yes	WN A350 LF2 CI.1		
<u>N7</u>	4" 300# RFWN WATER OUTLET	NPS 4 Sch 160	Nozzle	SA-333 6 Wld & smls pipe	No	No	No	NPS 4 Class 300 WN A350 LF2 Cl.1	No	
N8	4" 300# RFWN VENT	NPS 4 Sch 160	Nozzle	SA-333 6 Wld & smls pipe	No	No	No	NPS 4 Class 300	No	
			Pad	SA-516 70	Yes	Yes	Yes	CI.1		

Nozzle Summary

	Dimensions											
Nozzle	OD	t _n	Req t _n	Δ.2	Δ.2		Shell		Reinfor Pa	cement ad	Corr	A _a /A _r
mark	(in)	(in)	(in)	~1.	~ <u>2</u> .	Nom t (in)	Design t (in)	User t (in)	Width (in)	t _{pad} (in)	(in)	(%)
BOOT	64	2	0.3896	Yes	Yes	1.25	1.0909		12	2	0	104.4
<u>J2A</u>	3.5	0.438	0.216	Yes	Yes	1.375	1.0909		3	1	0	127.6
<u>J3A</u>	3.31	0.655	0.3896	Yes	Yes	2	0.3896		N/A	N/A	0.25	864.1
<u>J3B</u>	3.31	0.655	0.3896	Yes	Yes	2	0.3896		N/A	N/A	0.25	864.1
<u>J4A</u>	3.31	0.655	0.3896	Yes	Yes	2	0.3896		N/A	N/A	0.25	864.1
<u>J4B</u>	3.31	0.655	0.3896	Yes	Yes	2	0.3896		N/A	N/A	0.25	864.1
<u>M1</u>	24	1.25	0.3281	Yes	Yes	1.3*	0.9755		6	1	0	122.9
<u>M2</u>	24	1.25	0.3281	Yes	Yes	1.3*	0.9755		6	1	0	124.8
<u>N1</u>	24	1.25	0.3281	Yes	Yes	1.375	1.0909		6	1.5	0	137.6
<u>N2</u>	20	1	0.3281	Yes	Yes	1.375	1.0909		5	1.5	0	136.1
<u>N25</u>	60	1.25	0.4846	Yes	Yes	1.375	1.0909		15	1.375	0	107.0
<u>N26</u>	36	6	0.375	Yes	Yes	1.3*	0.9755		N/A	N/A	0	168.6
<u>N3</u>	16	1.031	0.375	Yes	Yes	1.375	1.0909		4	1.5	0	143.0
<u>N4</u>	8.625	0.719	0.322	Yes	Yes	1.375	1.0909		2.75	1	0	138.1
<u>N5</u>	4.5	0.531	0.237	Yes	Yes	1.375	1.0909		2	1	0	154.6
<u>N6A</u>	2.375	0.436	0.154	Yes	Yes	1.3*	1.0839		2	1	0	158.6
<u>N6B</u>	2.375	0.436	0.154	Yes	Yes	1.3*	1.0839		2	1	0	158.6
<u>N7</u>	4.5	0.531	0.237	Yes	Yes	1.5*	N/A		N/A	N/A	0	Exempt
<u>N8</u>	4.5	0.531	0.237	Yes	Yes	1.375	1.0909		2	1	0	154.6
*Head r	ninimun	n thickn	ess after	formi	ng							

	Definitions								
tn	Nozzle thickness								
Req t _n	Nozzle thickness required per UG-45/UG-16 Increased for pipe to account for 12.5% pipe thickness tolerance								
Nom t	Vessel wall thickness								
Design t	Required vessel wall thickness due to pressure + corrosion allowance per UG-37								
User t	Local vessel wall thickness (near opening)								
A _a	Area available per UG-37, governing condition								
A _r	Area required per UG-37, governing condition								
Corr	Corrosion allowance on nozzle wall								

Pressure Summary

		Compo	onent Sumr	nary					
ldentifier	P Design (psi)	T Design (°F)	MAWP (psi)	MAP (psi)	MAEP (psi)	T _e external (°F)	MDMT (°F)	MDMT Exemption	Impact Tested
Ellipsoidal Head #2	250	600	299.77	309.05	97.01	400	-66.3	Note 1	Yes
Straight Flange on Ellipsoidal Head #2	250	600	314.47	324.2	42.99	400	-70.3	Note 2	Yes
Cylinder #1	250	600	314.47	324.2	42.99	400	-70.3	Note 2	Yes
Cylinder #2	250	600	286.14	294.99	34.38	400	-62.4	Note 3	Yes
Cylinder #3	250	600	314.47	324.2	42.99	400	-70.3	Note 2	Yes
Cylinder #4	250	600	314.47	324.2	42.99	400	-70.3	Note 2	Yes
Cylinder #5	250	600	314.47	324.2	42.99	400	-70.3	Note 2	Yes
Straight Flange on Ellipsoidal Head #1	250	600	314.47	324.2	42.99	400	-70.3	Note 2	Yes
Ellipsoidal Head #1	250	600	299.77	309.05	97.01	400	-66.3	Note 1	Yes
Saddle #1	250	600	255.74	N/A	N/A	N/A	N/A	N/A	N/A
<u>60" BOOT (BOOT)</u>	250	600	255.74	263.64	34.38	400	-62.4	NozzleNote 4PadNote 5	Yes Yes
Straight Flange on Ellipsoidal Head #3	250	600	1,243.59	1,282.05	634.76	400	-155	Note 7	Yes
Ellipsoidal Head #3	250	600	965.17	995.02	400.36	400	-155	Note 6	Yes
3" 300# RFWN LG/LT (SIS) BRIDLE (J2A)	250	600	284.6	291.29	42.99	400	-55	Nozzle Note 8 Pad Note 9	No Yes
2" 300# RFLWN LEVEL TRANS (J3A)	250	600	570	740	34.38	400	-55	Note 10	No
2" 300# RFLWN LEVEL TRANS (J3B)	250	600	570	740	34.38	400	-55	Note 10	No
2" 300# RFLWN LEVEL TRANS (J4A)	250	600	570	740	34.38	400	-55	Note 10	No
2" 300# RFLWN LEVEL TRANS (J4B)	250	600	570	740	34.38	400	-55	Note 10	No
24" 300# RFWN MANWAY (M1)	250	600	278.01	286.61	42.99	400	-55	Nozzle Note 8 Pad Note 11	Yes Yes
24" 300# RFWN MANWAY (M2)	250	600	280.35	289.02	42.99	400	-55	Nozzle Note 8 Pad Note 11	Yes Yes
24" 300# RFWN FEED INLET (N1)	250	600	295.63	304.78	42.99	400	-55	Nozzle Note 8 Pad Note 9	Yes Yes
20" 300# RFWN VAPOUR OUTLET (N2)	250	600	293.76	302.84	42.99	400	-55	Nozzle Note 8 Pad Note 9	No Yes
<u>Nozzle #25 (N25)</u>	250	600	258.57	265.65	42.99	400	-4.3	Nozzle Note 12 Pad Note 13	No No
Nozzle #26 (N26)	250	600	333.02	343.28	42.99	400	19.1	Note 14	No
16" 300# RFWN HYDROCARBON OUTLET (N3)	250	600	303.24	310.43	42.99	400	-55	Nozzle Note 8 Pad Note 9	No Yes
<u>8" 300# RFWN VENT (N4)</u>	250	600	297.58	304.18	42.99	400	-55	Nozzle Note 8 Pad Note 9	No Yes
<u>4" 300# RFWN DRAIN (N5)</u>	250	600	314.47	322.06	42.99	400	-55	Nozzle Note 8 Pad Note 9	No Yes
2" 300# RFWN STEAM OUT (N6A)	250	600	299.77	309.04	42.99	400	-55	Nozzle Note 8 Pad Note 15	No Yes
2" 300# RFWN STEAM OUT (N6B)	250	600	299.77	309.04	42.99	400	-55	Nozzle Note 8 Pad Note 15	No Yes
4" 300# RFWN WATER OUTLET (N7)	250	600	570	693.9	318.38	400	-55	Note 8	No
<u>4" 300# RFWN VENT (N8)</u>	250	600	314.47	322.06	42.99	400	-55	Nozzle Note 8 Pad Note 9	No Yes

Chamber Summary								
Design MDMT	-49 °F							
Rated MDMT	19.1 °F @ 255.74 psi							
MAWP hot & corroded	255.74 psi @ 600 °F							
MAP cold & new	263.64 psi @ 70 °F							
MAEP	34.38 psi @ 400 °F							

	Notes for MDMT Rating								
Note #	Exemption	Details							
1.	Material is impact tested per UG-84 to -49°F.	UCS-66(i) reduction of 17.3°F applied (ratio = 0.8273).							
2.	Material is impact tested per UG-84 to -49°F.	UCS-66(i) reduction of 21.3°F applied (ratio = 0.7872).							
3.	Material is impact tested per UG-84 to -49°F.	UCS-66(i) reduction of 13.4°F applied (ratio = 0.8659).							
4.	Nozzle is impact tested per UG-84 to -49°F.	UCS-66(i) reduction of 13.4°F applied (ratio = 0.8659).							
5.	Pad is impact tested per UG-84 to -49°F.	UCS-66(i) reduction of 13.4°F applied (ratio = 0.8659).							
6.	Straight Flange governs MDMT								
7.	Material is impact tested per UG-84 to -49°F.	Stress ratio = 0.1933 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F.							
8.	Flange rating governs: Flange rated MDMT = -155°F Bolts rated MDMT per Fig UCS-66 note (e) = -55°F Flange is impact tested per material specification to -50°F.	Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F.							
9.	Pad is impact tested per UG-84 to -49°F.	UCS-66(i) reduction of 21.3°F applied (ratio = 0.7872).							
10.	LWN rated MDMT per UCS-66(c)(4) Flange rated MDMT = -155°F Bolts rated MDMT per Fig UCS-66 note (e) = -55°F Flange is impact tested per material specification to -50°F.	Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F.							
11.	Pad is impact tested per UG-84 to -49°F.	UCS-66(i) reduction of 25.5°F applied (ratio = 0.7446).							
12.	Nozzle impact test exemption temperature from Fig UCS-66 Curve B = 35.5°F 30°F MDMT reduction per UCS-68(c) applies. Fig UCS-66.1 MDMT reduction = 95.3°F, (coincident ratio = 0.3967) Rated MDMT of -89.8°F is limited to -55°F by UCS-66(b)(2)	UCS-66 governing thickness = 1.0938 in.							
13.	Pad impact test exemption temperature from Fig UCS-66 Curve B = 47°F 30°F MDMT reduction per UCS-68(c) applies. Fig UCS-66.1 MDMT reduction = 21.3°F, (coincident ratio = 0.7872)	UCS-66 governing thickness = 1.375 in.							
14.	Pad impact test exemption temperature from Fig UCS-66 Curve B = 44.6°F Fig UCS-66.1 MDMT reduction = 25.5°F, (coincident ratio = 0.7446) UCS-66 governing thickness = 1.3 in.	Bolts rated MDMT per Fig UCS-66 note (e) = -55°F							
15.	Pad is impact tested per UG-84 to -49°F.	UCS-66(i) reduction of 17.3°F applied (ratio = 0.8273).							

Settings Summary

COMPRESS 2023 Build 8300								
ASME Section VIII Division 1, 2004 Edition, A06 Addenda								
Units	U.S. Customary							
Datum Line Location	0.00" from right seam							
Vessel Design Mode	Rating Mode (Analysis)							
Minimum thickness	0.0625" per UG-16(b)							
Design for cold shut down only	No							
Design for lethal service (full radiography required)	No							
Design nozzles for	Design P only							
Corrosion weight loss	100% of theoretical loss							
UG-23 Stress Increase	1.20							
Skirt/legs stress increase	1.0							
Minimum nozzle projection	12"							
Juncture calculations for α > 30 only	Yes							
Preheat P-No 1 Materials > 1.25" and <= 1.50" thick	No							
UG-37(a) shell tr calculation considers longitudinal stress	No							
Cylindrical shells made from pipe are entered as minimum thickness	No							
Nozzles made from pipe are entered as minimum thickness	No							
ASME B16.9 fittings are entered as minimum thickness	No							
Butt welds	Tapered per Figure UCS-66.3(a)							
Disallow Appendix 1-5, 1-8 calculations under 15 psi	No							
Hydro/Pneumatic Test								
Shop Hydrotest Pressure	1.3 times vessel MAWP [UG-99(b)]							
Test liquid specific gravity	1.00							
Maximum stress during test	90% of yield							
Required Marking - UG-116								
UG-116(e) Radiography	RT4							
UG-116(f) Postweld heat treatment	нт							
Code Cases\Interpretations								
Use Code Case 2547	No							
Use Code Case 2901	No							
Use Code Case 3035	No							
Apply interpretation VIII-1-83-66	Yes							
Apply interpretation VIII-1-86-175	Yes							
Apply interpretation VIII-1-83-115	Yes							
Apply interpretation VIII-1-01-37	Yes							
Apply interpretation VIII-1-01-150	No							
Apply interpretation VIII-1-07-50	No							
Apply interpretation VIII-1-16-85	No							
No UCS-66.1 MDMT reduction	No							
No UCS-68(c) MDMT reduction	No							
Disallow UG-20(f) exemptions	No							
UG-22 Loadings								
UG-22(a) Internal or External Design Pressure	Yes							
UG-22(b) Weight of the vessel and normal contents under operating or test conditions	Yes							
UG-22(c) Superimposed static reactions from weight of attached equipment (external loads)	Yes							
UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs	Yes							
UG-22(f) Wind reactions	Yes							
UG-22(f) Seismic reactions	No							
	1							

Note: UG-22(b),(c) and (f) loads only considered when supports are present.

Note 2: UG-22(d)(1),(e),(f)-snow,(g),(h),(i) are not considered. If these loads are present, additional calculations must be performed.

License Information							
Company Name	Codeware, Inc.						
License	Commercial						
License Key ID	81004						
Support Expires	June 03, 2023						

Radiography Summary

UG-116 Radiography									
	Long	jitudinal Seam	Left Circ	cumferential Seam	Right Cir	cumferential Seam			
Component	Category (Fig UW- 3)	Radiography / Joint Type	Category (Fig UW- 3)	Radiography / Joint Type	Category (Fig UW- 3)	Radiography / Joint Type	Mark		
Ellipsoidal Head #2	А	Full UW-11(a) / Type 1	N/A	N/A	В	Full UW-11(a) / Type 1	RT1		
Cylinder #1	A	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 1	RT1		
Cylinder #2	А	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 1	В	Full UW-11(a) / Type 1	RT1		
Ellipsoidal Head #3	N/A	Seamless No RT	В	Full UW-11(a) / Type 1	N/A	N/A	RT1		
<u>Cylinder #3</u>	A	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	RT1		
<u>Cylinder #4</u>	A	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	RT1		
<u>Cylinder #5</u>	A	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	RT1		
Ellipsoidal Head #1	A	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	N/A	N/A	RT1		
Nozzie	Long	jitudinal Seam	Noz Circu	zzle to Vessel nferential Seam	No. Circur	zzle free end nferential Seam			
24" 300# RFWN MANWAY (M1)	A	Full UW-11(a) / Type 1	D	N/A / Type 7	с	Full UW-11(a) / Type 1	RT1		
2" 300# RFWN STEAM OUT (N6A)	A	Welded pipe	D	N/A / Type 7	с	UW-11(a)(4) exempt / Type 1	RT3		
Nozzle #26 (N26)	N/A	Seamless No RT	D	N/A / Type 7	N/A	N/A	N/A		
20" 300# RFWN VAPOUR OUTLET (N2)	A	Full UW-11(a) / Type 1	D	N/A / Type 7	с	Full UW-11(a) / Type 1	RT1		
16" 300# RFWN HYDROCARBON OUTLET (N3)	A	Welded pipe	D	N/A / Type 7	с	Full UW-11(a) / Type 1	RT4		
<u>8" 300# RFWN VENT (N4)</u>	A	Welded pipe	D	N/A / Type 7	с	UW-11(a)(4) exempt / Type 1	RT3		
3" 300# RFWN LG/LT (SIS) BRIDLE (J2A)	A	Welded pipe	D	N/A / Type 7	с	UW-11(a)(4) exempt / Type 1	RT3		
<u>60" BOOT (BOOT)</u>	A	Full UW-11(a) / Type 1	D	N/A / Type 7	в	Full UW-11(a) / Type 1	RT1		
4" 300# RFWN WATER OUTLET (N7)	A	Welded pipe	D	N/A / Type 7	с	UW-11(a)(4) exempt / Type 1	RT3		
2" 300# RFLWN LEVEL TRANS (J3A)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A		
2" 300# RFLWN LEVEL TRANS (J3B)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A		
2" 300# RFLWN LEVEL TRANS (J4A)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A		
2" 300# RFLWN LEVEL TRANS (J4B)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A		
<u>Nozzle #25 (N25)</u>	N/A	Seamless No RT	D	N/A / Type 7	с	Full UW-11(a) / Type 1	RT1		
24" 300# RFWN FEED INLET (N1)	A	Full UW-11(a) / Type 1	D	N/A / Type 7	с	Full UW-11(a) / Type 1	RT1		
4" 300# RFWN DRAIN (N5)	A	Welded pipe	D	N/A / Type 7	с	UW-11(a)(4) exempt / Type 1	RT3		
4" 300# RFWN VENT (N8)	A	Welded pipe	D	N/A / Type 7	с	UW-11(a)(4) exempt / Type 1	RT3		
24" 300# RFWN MANWAY (M2)	A	Full UW-11(a) / Type 1	D	N/A / Type 7	с	Full UW-11(a) / Type 1	RT1		
2" 300# RFWN STEAM OUT (N6B)	A	Welded pipe	D	N/A / Type 7	с	UW-11(a)(4) exempt / Type 1	RT3		
Nozzle Flange	Long	jitudinal Seam	Flange Face		Noz Circur	zzle to Flange nferential Seam			

ASME B16.5/16.47 flange attached to 24" 300# RFWN MANWAY (M1)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	Full UW-11(a) / Type 1	RT1			
ASME B16.5/16.47 flange attached to 2" 300# RFWN STEAM OUT (N6A)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	UW-11(a)(4) exempt / Type 1	N/A			
ASME B16.5/16.47 flange attached to 20" 300# RFWN VAPOUR OUTLET (N2)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	Full UW-11(a) / Type 1	RT1			
ASME B16.5/16.47 flange attached to 16" 300# RFWN HYDROCARBON OUTLET (N3)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	Full UW-11(a) / Type 1	RT1			
ASME B16.5/16.47 flange attached to 8" 300# RFWN VENT (N4)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	UW-11(a)(4) exempt / Type 1	N/A			
ASME B16.5/16.47 flange attached to 3" 300# RFWN LG/LT (SIS) BRIDLE (J2A)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	UW-11(a)(4) exempt / Type 1	N/A			
ASME B16.5/16.47 flange attached to 4" 300# RFWN WATER OUTLET (N7)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	UW-11(a)(4) exempt / Type 1	N/A			
ASME B16.5/16.47 flange attached to 2" 300# RFLWN LEVEL TRANS (J3A)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	N/A	N/A			
ASME B16.5/16.47 flange attached to 2" 300# RFLWN LEVEL TRANS (J3B)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	N/A	N/A			
ASME B16.5/16.47 flange attached to 2" 300# RFLWN LEVEL TRANS (J4A)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	N/A	N/A			
ASME B16.5/16.47 flange attached to 2" 300# RFLWN LEVEL TRANS (J4B)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	N/A	N/A			
ASME B16.5/16.47 flange attached to Nozzle #25 (N25)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	Full UW-11(a) / Type 1	RT1			
ASME B16.5/16.47 flange attached to 24" 300# RFWN FEED INLET (N1)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	Full UW-11(a) / Type 1	RT1			
ASME B16.5/16.47 flange attached to 4" 300# RFWN DRAIN (N5)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	UW-11(a)(4) exempt / Type 1	N/A			
ASME B16.5/16.47 flange attached to 4" 300# RFWN VENT (N8)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	UW-11(a)(4) exempt / Type 1	N/A			
ASME B16.5/16.47 flange attached to 24" 300# RFWN MANWAY (M2)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	Full UW-11(a) / Type 1	RT1			
ASME B16.5/16.47 flange attached to 2" 300# RFWN STEAM OUT (N6B)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	UW-11(a)(4) exempt / Type 1	N/A			
UG-116(e) Required Marking: RT4										

Thickness Summary

Component Data										
Component Identifier	Material	Diameter (in)	Length (in)	Nominal t (in)	Design t (in)	Total Corrosion (in)	Joint E	Load		
Ellipsoidal Head #2	SA-516 70	168 ID	43.3	1.3*	1.0839	0	1.00	Internal		
Straight Flange on Ellipsoidal Head #2	SA-516 70	168 ID	2	1.375	1.091	0	1.00	Internal		
Cylinder #1	SA-516 70	168 ID	86	1.375	1.091	0	1.00	Internal		
Cylinder #2	SA-516 70	168 ID	120	1.25	1.091	0	1.00	Internal		
Cylinder #3	SA-516 70	168 ID	87	1.375	1.091	0	1.00	Internal		
Cylinder #4	SA-516 70	168 ID	87	1.375	1.091	0	1.00	Internal		
Cylinder #5	SA-516 70	168 ID	120	1.375	1.091	0	1.00	Internal		
Straight Flange on Ellipsoidal Head #1	SA-516 70	168 ID	2	1.375	1.091	0	1.00	Internal		
Ellipsoidal Head #1	SA-516 70	168 ID	43.3	1.3*	1.0839	0	1.00	Internal		
Straight Flange on Ellipsoidal Head #3	SA-516 70	60 ID	2	2	0.3897	0	1.00	Internal		
Ellipsoidal Head #3	SA-516 70	60 ID	16.5	1.5*	0.3871	0	1.00	Internal		
*Head minimum thickness after forming										

	Definitions							
Nominal t	Vessel wall nominal thickness							
Design t	Required vessel thickness due to governing loading + corrosion							
Joint E	Joint E Longitudinal seam joint efficiency							
Load								
Internal	Circumferential stress due to internal pressure governs							
External	External pressure governs							
Wind	Combined longitudinal stress of pressure + weight + wind governs							
Seismic	Combined longitudinal stress of pressure + weight + seismic governs							

Weight Summary

Weight (Ib) Contributed by Vessel Elements											
Component	Metal	Metal	Inculation	Insulation	Lining	Piping	Operating Liquid		Test Liquid		
Component	New*	Corroded	insulation	Supports	Lining	+ Liquid	New	Corroded	New	Corroded	
Ellipsoidal Head #2	12,065.5	12,065.5	1,401.4	50	0	0	0	0	24,231	24,231	
Cylinder #1	17,579.9	17,579.9	1,967.2	50	0	0	0	0	69,220.1	69,220.1	
Cylinder #2	21,433.3	21,433.3	2,741	50	0	0	0	0	105,492.3	105,495.1	
Cylinder #3	16,913.7	16,913.7	1,990.1	50	0	0	0	0	71,659.4	71,659.4	
Cylinder #4	18,013.9	18,013.9	1,990.1	50	0	0	0	0	69,614.5	69,614.5	
Cylinder #5	24,658.3	24,658.3	2,745	50	0	0	0	0	96,440.8	96,440.8	
Ellipsoidal Head #1	12,439.9	12,439.9	1,401.4	50	0	0	0	0	24,116.5	24,116.5	
Saddle #1	6,702	6,702	0	0	0	0	0	0	0	0	
TOTAL:	129,806.4	129,806.4	14,236.2	350	0	0	0	0	460,774.6	460,777.4	
*Shells with attached	l nozzles ha	ve weight re	educed by m	aterial cut o	ut for op	ening.					

Weight (Ib) Contributed by Attachments											
Component	Bod	Body Flanges Flar		iles & Packed		Trays	Tray	Rings &	Vertical		
	New	Corroded	New	Corroded	Beas		oupports	Ciips	LUaus		
Ellipsoidal Head #2	0	0	4,162.6	4,162.6	0	0	0	0	0		
Cylinder #1	0	0	2,003.3	2,003.3	0	0	0	0	0		
Cylinder #2	0	0	13,577.3	13,550.9	0	0	0	578.5	0		
Cylinder #3	0	0	17,000.2	17,000.2	0	0	0	0	7,700*		
Cylinder #4	0	0	0	0	0	0	0	0	18,243		
Cylinder #5	0	0	1,819.2	1,819.2	0	0	0	578.5	0		
Ellipsoidal Head #1	0	0	2,018.4	2,018.4	0	0	0	0	0		
TOTAL:	0	0	40,580.9	40,554.6	0	0	0	1,157.1	25,943*		
*** This number inclu	udes ve	ertical loads	which are	not presen	t in all co	nditions	5.				

Vessel Totals								
	New	Corroded						
Operating Weight (Ib)	212,074	212,047						
Empty Weight (lb) 212,074 212,047								
Test Weight (lb)	672,848	672,825						
Capacity** (US gal) 53,738 53,738								
**The vessel capacity does not include volume of nozzle, piping or other attachments.								

Vessel Lift Condition	
Vessel Lift Weight, New (lb)	204,374
Center of Gravity from Datum (in)	252.3915

Long Seam Summary

Shell Long Seam Angles									
Component	Seam 1	Seam 2	Seam 3						
Cylinder #1	89°	209.4268°	328.5732°						
Cylinder #2	15.5158°	134.4842°	255°						
Cylinder #3	35.4268°	155.8537°	275°						
Cylinder #4	95.1463°	215.5731°	336°						
Cylinder #5	36°	155.1463°	275.5731°						

Shell Plate Lengths									
Component	Starting Angle	Plate 1	Plate 3						
Cylinder #1	89°	178"	176.1073"	178"					
Cylinder #2	15.5158°	175.7145"	178"	178"					
Cylinder #3	35.4268°	178"	176.1073"	178"					
Cylinder #4	95.1463°	178"	178"	176.1073"					
Cylinder #5	36°	176.1073"	178"	178"					

Note

1) Plate Lengths use the circumference of the vessel based on the mid diameter of the components.

Shell Rollout

Hydrostatic Test

Horizontal shop hydrostatic test based on MAWP per UG-99(b)

Gauge pressure at 70°F $= 1.3 \cdot MAWP \cdot LSR$

 $= 1.3 \cdot 255.74 \cdot 1$

=332.46 psi

Horizontal shop hydrostatic test									
Identifier	Local test pressure (psi)	Test liquid static head (psi)	UG-99(b) stress ratio	UG-99(b) pressure factor	Stress during test (psi)	Allowable test stress (psi)	Stress excessive?		
Ellipsoidal Head #2	339.93	7.472	1.0309	1.30	19,768	34,200	No		
Straight Flange on Ellipsoidal Head #2	339.93	7.472	1.0309	1.30	20,936	34,200	No		
Cylinder #1	339.93	7.472	1.0309	1.30	20,936	34,200	No		
Cylinder #2	339.93	7.472	1.0309	1.30	23,013	34,200	No		
Cylinder #3	339.93	7.472	1.0309	1.30	20,936	34,200	No		
Cylinder #4	339.93	7.472	1.0309	1.30	20,936	34,200	No		
Cylinder #5	339.93	7.472	1.0309	1.30	20,936	34,200	No		
Straight Flange on Ellipsoidal Head #1	339.93	7.472	1.0309	1.30	20,936	34,200	No		
Ellipsoidal Head #1	339.93	7.472	1.0309	1.30	19,768	34,200	No		
Straight Flange on Ellipsoidal Head #3	342.962	10.504	1.0309	1.30	5,314	34,200	No		
Ellipsoidal Head #3	343.504	11.046	1.0309	1.30	6,183	34,200	No		
16" 300# RFWN HYDROCARBON OUTLET (N3) (1)	340.63	8.172	1	1.30	20,608	51,300	No		
2" 300# RFLWN LEVEL TRANS (J3A)	342.746	10.288	1.087	1.30	5,594	51,300	No		
2" 300# RFLWN LEVEL TRANS (J3B)	340.363	7.905	1.087	1.30	5,555	51,300	No		
2" 300# RFLWN LEVEL TRANS (J4A)	342.746	10.288	1.087	1.30	5,594	51,300	No		
2" 300# RFLWN LEVEL TRANS (J4B)	340.363	7.905	1.087	1.30	5,555	51,300	No		
2" 300# RFWN STEAM OUT (N6A)	339.374	6.916	1	1.30	16,225	51,300	No		
2" 300# RFWN STEAM OUT (N6B)	339.374	6.916	1	1.30	16,225	51,300	No		
20" 300# RFWN VAPOUR OUTLET (N2)	333.816	1.358	1.0309	1.30	21,888	51,300	No		
24" 300# RFWN FEED INLET (N1)	333.816	1.358	1.0309	1.30	21,118	51,300	No		
24" 300# RFWN MANWAY (M1)	338.911	6.452	1.0309	1.30	23,813	51,300	No		
24" 300# RFWN MANWAY (M2)	338.586	6.128	1.0309	1.30	23,507	51,300	No		
3" 300# RFWN LG/LT (SIS) BRIDLE (J2A)	339.653	7.195	1	1.30	16,335	51,300	No		
4" 300# RFWN DRAIN (N5)	340.413	7.955	1	1.30	18,898	51,300	No		
4" 300# RFWN VENT (N8)	333.816	1.358	1	1.30	18,532	51,300	No		
4" 300# RFWN WATER OUTLET (N7)	343.778	11.32	1	1.30	8,061	51,300	No		
60" BOOT (BOOT)	342.89	10.432	1.0309	1.30	22,453	51,300	No		
8" 300# RFWN VENT (N4)	333.816	1.358	1	1.30	20,912	51,300	No		
Nozzle #25 (N25)	337.936	5.478	1	1.30	31,488	51,300	No		
Nozzle #26 (N26)	337.331	4.873	1	1.30	9,321	51,300	No		

(1) 16" 300# RFWN HYDROCARBON OUTLET (N3) limits the UG-99(b) stress ratio.
 (2) P_L stresses at nozzle openings have been estimated using the method described in PVP-Vol. 399, pages 77-82.
 (3) 1.5*0.9*S_y used as the basis for the maximum local primary membrane stress at the nozzle intersection P_L.

(4) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange.

The field test condition has not been investigated.

The test temperature of 70 °F is warmer than the minimum recommended temperature of 49.1 °F so the brittle fracture provision of UG-99(h) has been met.

Vacuum Summary

Largest Unsupported Length Le									
Component	Line of Support	Elevation above Datum (in)	Length Le (in)						
Ellipsoidal Head #2	-	545.3	N/A						
-	<u>1/3 depth of Ellipsoidal Head #2</u>	516	N/A						
Straight Flange on Ellipsoidal Head #2 Left	-	502	532						
Straight Flange on Ellipsoidal Head #2 Right	-	500	532						
Cylinder #1 Left	-	500	532						
Cylinder #1 Right	-	414	532						
Cylinder #2 Left	-	414	532						
Cylinder #2 Right	-	294	532						
Cylinder #3 Left	-	294	532						
Cylinder #3 Right	-	207	532						
Cylinder #4 Left	-	207	532						
Cylinder #4 Right	-	120	532						
Cylinder #5 Left	-	120	532						
Cylinder #5 Right	-	0	532						
Straight Flange on Ellipsoidal Head #1 Left	-	0	532						
Straight Flange on Ellipsoidal Head #1 Right	-	-2	532						
-	1/3 depth of Ellipsoidal Head #1	-16	N/A						
Ellipsoidal Head #1	-	-45.3	N/A						

Foundation Load Summary

	Saddle #1: Total Loading at Base (Right Sliding Saddle)							
Load	Vessel Condition	Longitudinal Base Shear (Ib _f)	Transverse Base Shear (lb _f)	Vertical Force (lb _f)				
Weight	Operating, New	20,980	0	104,902				
Weight	Operating, Corroded	20,979	0	104,895				
Wind	Operating, New	21,675	12,140	124,113				
Wind	Operating, Corroded	21,674	12,140	124,106				
Wind	External Pressure, Corroded	21,674	12,140	124,106				

	Saddle #1: Total Loading at Base (Left Fixed Saddle)							
Load	Vessel Condition	Longitudinal Base Shear (Ib _f)	Transverse Base Shear (lb _f)	r Vertical Force (lb _f)				
Weight	Operating, New	20,980	0	107,171				
Weight	Operating, Corroded	20,979	0	107,152				
Wind	Operating, New	21,675	12,140	126,382				
Wind	Operating, Corroded	21,674	12,140	126,363				
Wind	External Pressure, Corroded	21,674	12,140	126,363				

Shear and moment values reported above are presented without applicable load combination factors.

Support Information					
Support Type	Saddle				
Number of Saddles	2				
Base Plate Length	150"				
Base Plate Width	16"				
Base Plate Thickness	1.5"				
Base Plate Separation Distance CL-to-CL	392"				
Right Saddle Distance from Datum	54"				
Number of Anchor Bolts Per Base Plate	4				
Bolt Size and Type	1-1/2" series 8 bolt				
Bolt Hole Clearance	0.25"				
Slotted Hole Length	3.0749"				
Center of Gravity (Distance from Datum)	252.3915"				

Bill of Materials

	Heads / Covers							
Item #	Туре	Material	Thk [in]	Dia. [in]	Wt. [lb] (ea.)	Qty		
H1	Ellipsoidal Head	SA-516 70 (N, FGP, Impact (-49 °F))	1.3 (min.)	168 ID	12,608	2		
H2	Ellipsoidal Head	SA-516 70 (N, FGP, Impact (-49 °F))	1.5 (min.)	60 ID	2,093.1	1		
НЗ	ASME B16.5/B16.47 Blind NPS 24 Class 300	A350 LF2 CI.1	2.75	36 OD	914	2		
H4	ASME B16.5/B16.47 Blind NPS 24 Class 300	A105	2.75	36 OD	914	1		
H5	ASME B16.5/B16.47 Blind NPS 60 Class 400	A105	7.56	74.25 OD	9,735	1		

	Shells							
Item #	Туре	Material	Thk [in]	Dia. [in]	Length [in]	Wt. [lb] (ea.)	Qty	
S1	Cylinder	SA-516 70 (N, FGP, Impact (-49 °F))	1.375	168 ID	86	17,806.8	1	
S2	Cylinder	SA-516 70 (N, FGP, Impact (-49 °F))	1.25	168 ID	120	22,571.3	1	
S3	Cylinder	SA-516 70 (N, FGP, Impact (-49 °F))	1.375	168 ID	87	18,013.9	2	
S4	Cylinder	SA-516 70 (N, FGP, Impact (-49 °F))	1.375	168 ID	120	24,846.7	1	

			Nozzles				
Item #	Туре	Material	NPS	Thk [in]	Dia. [in]	Length [in]	Wt. [lb]
Noz1	Nozzle	SA-516 70 (N, FGP, Impact (-49 °F))	-	1.25	24 OD	63.2	2,364.8
Noz2	Nozzle	SA-333 6 Wld & smls pipe	NPS 2 XXS	0.436	2.375 OD	37.3	43.6
Noz3	Nozzle	SA-516 70	-	1	20 OD	33.2	727.8
Noz4	Nozzle	SA-333 6 Wld & smls pipe	NPS 16 Sch 100	1.031	16 OD	14	298.9
Noz5	Nozzle	SA-333 6 Wld & smls pipe	NPS 8 Sch 120	0.719	8.625 OD	34.7	203.3
Noz6	Nozzle	SA-333 6 Wld & smls pipe	NPS 3 Sch 160	0.438	3.5 OD	20	41.2
Noz7	Nozzle	SA-516 70 (N, FGP, Impact (-49 °F))	-	2	64 OD	88.3	11,360
Noz8	Nozzle	SA-333 6 Wld & smls pipe	NPS 4 Sch 160	0.531	4.5 OD	49.9	109.8
Noz9	Nozzle	SA-106 B Smls pipe	NPS 60 (Thk = 1.250")	1.25	60 OD	31.7	3,445.2

Nozzles - Studding Outlets							
Item #	Туре	Material	# Bolts	Thk [in]	Dia. [in]	Wt. [lb]	Qty
SP1	Studding Outlet Custom Size - Contoured Base	SA-106 B Smls pipe	24	7.3	36 OD x 24 ID	1,139.7	1

	Flanges							
Item #	Туре	Material	NPS	Dia. [in]	Wt. [lb] (ea.)	Qty		
AF1	ASME B16.5 Welding Neck - Class 300	A350 LF2 CI.1	24	36 x 21.5	580	3		
AF2	ASME B16.5 Welding Neck - Class 300	A350 LF2 CI.1	2	6.5 x 2.07	9	2		
AF3	ASME B16.5 Welding Neck - Class 300	A350 LF2 CI.1	20	30.5 x 18	400	1		
AF4	ASME B16.5 Welding Neck - Class 300	A350 LF2 CI.1	16	25.5 x 13.938	250	1		
AF5	ASME B16.5 Welding Neck - Class 300	A350 LF2 CI.1	8	15 x 7.98	67	1		
AF6	ASME B16.5 Welding Neck - Class 300	A350 LF2 CI.1	3	8.25 x 3.07	15	1		
AF7	ASME B16.5 Long Weld Neck - Class 300 - 14" len.	A350 LF2 CI.1	2	Flange 6.5 x 2; Nozzle 0.655 thk. x 3.31 OD dia.	29.4	4		
AF8	ASME B16.5 Welding Neck - Class 300	A350 LF2 CI.1	4	10 x 4.03	25	3		
AF9	ASME B16.47 Welding Neck - Class 400 - Series A	A105	60	74.25 x 57.5	3,820	1		

	Gaskets			
Item #	Туре	Size [in]	Thk [in]	Qty
G1	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel (ASME B16.20 Kammprofile)	NPS 24 - Class 300	0.145	3
G2	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel (ASME B16.20 Kammprofile)	NPS 2 - Class 300	0.145	5
G3	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel (ASME B16.20 Kammprofile)	NPS 20 - Class 300	0.145	1
G4	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel (ASME B16.20 Kammprofile)	NPS 16 - Class 300	0.145	1
G5	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel (ASME B16.20 Kammprofile)	NPS 8 - Class 300	0.145	1
G6	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel (ASME B16.20 Kammprofile)	NPS 3 - Class 300	0.145	1
G7	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel (ASME B16.20 Kammprofile)	NPS 4 - Class 300	0.145	3
There a	re 2 flanges that do not include gasket information.			

	Fasteners						
Item #	Description	Material	Length [in]	Qty			
FB1	1-1/2" series 8 bolt	SA-193 B7 Bolt <= 2 1/2	-	24			
FB2	1-1/2" series 8 bolt	SA-193 B7 Bolt <= 2 1/2	7.8	72			
FB3	5/8" coarse bolt	SA-193 B7 Bolt <= 2 1/2	3	48			
FB4	1-1/4" series 8 bolt	SA-193 B7 Bolt <= 2 1/2	7	24			
FB5	1-1/4" series 8 bolt	SA-193 B7 Bolt <= 2 1/2	6.3	20			
FB6	7/8" coarse bolt	SA-193 B7 Bolt <= 2 1/2	4.8	12			
FB7	3/4" coarse bolt	SA-193 B7 Bolt <= 2 1/2	3.5	8			
FB8	3/4" coarse bolt	SA-193 B7 Bolt <= 2 1/2	3.8	24			
FB9	2-3/4" series 8 bolt	SA-193 B7 Bolt (2 1/2 < t <= 4)	21.3	32			
SB1	1-1/2" series 8 bolt	ASTM 325	-	8			
All Bate of the second							

All listed flange bolts require associated nuts and washers in accordance with Division 1, UCS-11.

Insulation						
Item #	Thk [in]	Density [lb/cu ft]	Wt. [lb]	Qty [ft²]		
IN1	4	18	14,236.2	2,372.69		

	Plates					
Item #	Material	Thk [in]	Wt. [lb]	Qty [ft ²]		
Plate1	SA-516 70 (N, FGP, Impact (-49 °F))	1	690.7	16.95		
Plate1 - Note: Appli	es to nozzle pad					
Plate2	SA-516 70 (N, FGP, Impact (-49 °F))	1.5	616.1	15.12		
Plate2 - Note: Appli	es to nozzle pad					
Plate3	SA-516 70 (N, FGP, Impact (-49 °F))	2	1,721.2	42.24		
Plate3 - Note: Appli	es to nozzle pad		·			
Plate4	SA-516 70	1.375	1,800.4	44.18		
Plate4 - Note: Appli	es to nozzle pad					
Plate5	SA516-70N	0.375	1,168.9	76.66		
Plate5 - Note: Applie	es to saddle wear plate					
Plate6	SA516-70N	1.5	2,037.6	33.33		
Plate6 - Note: Applie	es to saddle base plate					
Plate7	SA516-70N	0.625	2,237.1	87.83		
Plate7 - Note: Appli	es to saddle web plate					
Plate8	SA516-70N	0.5	1,259.3	61.8		
Plate8 - Note: Appli	es to saddle rib plate					
Plate9	Plate9 SA-516-70N 3 577.3 4.72					
Plate9 - Note: Appli	es to lift lug plates					
Plate10	SA-516-70N	1.5	458.5	7.5		
Plate10 - Note: Applies to lift lug pad plates						

Wind Code

Building Code: NBC 1995		
Elevation of base above grade	21.80 ft (6.64 m)	
Increase effective outer diameter by	0.33 ft (0.10 m)	
Reference Wind Pressure, q	0.0611 psi (0.4213 kPa)	
Exposure Category	В	
Hazardous, toxic, or explosive contents	No	
Location	Fort McMurray, Alberta	

Wind Pressure (WP) Calculations

Determine Wind Pressure P_{W} for saddle wind shear calculations:

Factor C_e = 0.5000 [Commentary, Figure B-1]

 $P_w = q \cdot C_e$

 $= 0.0611 \cdot 0.5000$

=0.0306 psi

=4.4000 psf

Shear calculations are reported in the saddle report.

Data Sheet note 1.6 - piping approx.

ASME Section VIII Division 1, 2004 Edition, A06 Addenda			
Inputs			
Load Orientation	Vertical Load		
Position from datum 261.95"			
Direction Angle	0.00°		
Magnitude of Force	7,700 lb		
Loading Conditions			
Present When Operating Yes			
Included in Vessel Lift Weight	No		
Present When Vessel is Empty	Yes		
Present During Test	Yes		

Lateral Force #1

ASME Section VIII Division 1, 2004 Edition, A06 Addenda				
Inputs				
Load Orientation Lateral Force				
Elevation Above Datum 251.5"				
Magnitude of Force	7,700 lb _f			
Direction Angle	0.00°			
Loading Conditions				
Present When Operating	Yes			
Present When Vessel is Empty	Yes			
Present During Test	Yes			

Misc Weight

ASME Section VIII Division 1, 2004 Edition, A06 Addenda			
Inputs			
Load Orientation	Vertical Load		
Position from datum	179"		
Direction Angle	0.00°		
Magnitude of Force	18,243 lb		
Loading Conditions			
Present When Operating Yes			
Included in Vessel Lift Weight	Yes		
Present When Vessel is Empty	Yes		
Present During Test	Yes		

Ellipsoidal Head #2

ASME Section VIII Division 1, 2004 Edition, A06 Addenda							
Com	ponent	Ellipsoidal Head					
Material		SA-516 70 (II-D p. 14, In. 20)					
Attached To		Cylinder #1					
Impact Tested	Normalized	Fine Grain Practice	Fine Grain Practice PWHT Maximize MDM No MAWP				
Yes (-49°F)	Yes	Yes	Yes	No			
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)			
Inte	ernal	250	600	-49			
Ext	ernal	15	400				
		Static L	iquid Head				
Con	dition	P _s (psi)	H _s (in)	SG			
Test he	orizontal	7.47	207	1			
		Dime	ensions				
Inner D	Diameter		168"				
Head	Ratio		2				
Minimum	Thickness	1.3"					
Corrosion	Inner	0"					
	Outer		0"				
Leng	jth L _{sf}		2"				
Nominal T	hickness t _{sf}		1.375"				
		Weight a	nd Capacity				
		w	eight (Ib) ¹	Capacity (US gal) ¹			
N	ew	12,065.45		2,878.84			
Corroded		12,065.45		2,878.84			
		Ins	ulation				
	Thickness (in) Density (lb/ft ³)		Weight (lb)				
Insu	lation	4	18	1,401.37			
		Spacing(in)	Individual Weight (lb)	Total Weight (lb)			
Insu Sup	lation ports	145 50		50			
Radiography							
Categor	y A joints	Full UW-11(a) Type 1					
Head to s	shell seam	Full UW-11(a) Type 1					

¹ includes straight flange

Results Summary			
Governing condition	internal pressure		
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"		
Design thickness due to internal pressure (t)	<u>1.0839</u> "		
Design thickness due to external pressure (t_e)	<u>0.4459</u> "		
Maximum allowable working pressure (MAWP)	<u>299.77</u> psi		
Maximum allowable pressure (MAP)	<u>309.05</u> psi		
Maximum allowable external pressure (MAEP)	<u>97.01</u> psi		
Rated MDMT	-66.3°F		

UCS-66 Material Toughness Requirements		
Material impact test temperature per UG-84 =	-49°F	
$t_r = \frac{255.74 \cdot 168}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 255.74} =$	1.0755"	
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0755 \cdot 1}{1.3 - 0} =$	0.8273	
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	17.3°F	
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 17.3, -155] =$	-66.3°F	
Design MDMT of -49°F is acceptable.		

Design thickness for internal pressure, (Corroded at 600 °F) UG-32(d)(1)

$$t = \frac{P \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{250 \cdot 168}{2 \cdot 19,400 \cdot 1 - 0.2 \cdot 250} + 0 = \underline{1.0839}$$

Maximum allowable working pressure, (Corroded at 600 °F) UG-32(d)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 19,400 \cdot 1 \cdot 1.3}{168 + 0.2 \cdot 1.3} - 0 = \underline{299.77} \text{ psi}$$

Maximum allowable pressure, (New at 70 °F) UG-32(d)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 20,000 \cdot 1 \cdot 1.3}{168 + 0.2 \cdot 1.3} - 0 = \underline{309.05} \text{ psi}$$

Design thickness for external pressure, (Corroded at 400 °F) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0.8865 \cdot 170.6 = 151.2351$ in

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{151.2351 \ / \ 0.445813} = 0.000368$$

From Table CS-2: B = 5,088.5176 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{5,088.5176}{151.2351 \ / \ 0.4458} = 15 \ \text{psi}$$

t = 0.4458"+Corrosion = 0.4458" + 0" = 0.4458"

Check the external pressure per UG-33(a)(1) UG-32(d)(1)

$$t = \frac{1.67 \cdot P_e \cdot D}{2 \cdot S \cdot E - 0.2 \cdot 1.67 \cdot P_e} + \text{Corrosion} = \frac{1.67 \cdot 15 \cdot 168}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 1.67 \cdot 15} + 0 = 0.1052$$

The head external pressure design thickness (te) is 0.4458".

Maximum Allowable External Pressure, (Corroded at 400 °F) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0.8865 \cdot 170.6 = 151.2351$ in

$$A = rac{0.125}{R_o \ / \ t} = rac{0.125}{151.2351 \ / \ 1.3} = 0.001074$$

From Table CS-2: B = 11,285.56 psi

$$P_a = {B \over R_o \ / \ t} = {11,285.56 \over 151.2351 \ / \ 1.3} = 97.0094 ~{
m psi}$$

Check the Maximum External Pressure, UG-33(a)(1) UG-32(d)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{(D + 0.2 \cdot t) \cdot 1.67} = \frac{2 \cdot 20,000 \cdot 1 \cdot 1.3}{(168 + 0.2 \cdot 1.3) \cdot 1.67} = 185.06 \text{ psi}$$

The maximum allowable external pressure (MAEP) is <u>97.01</u> psi.

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 1.375}{29.2475}\right) \cdot \left(1 - \frac{29.2475}{\infty}\right) = 3.5259\%$$

The extreme fiber elongation does not exceed 5%.

Straight Flange on Ellipsoidal Head #2

ASME Section VIII Division 1, 2004 Edition, A06 Addenda				
Component		Cylinder		
Ma	terial	SA-516 70 (II-D p. 14, In. 20)		
Impact Tested	Normalized	Fine Grain Practice	РѠҤТ	Maximize MDMT/ No MAWP
Yes (-49°F)	Yes	Yes	Yes	No
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)
Inte	ernal	250	600	40
Ext	ernal	15	400	-49
		Static Liqu	uid Head	
Con	dition	P _s (psi)	H _s (in)	SG
Test h	orizontal	7.47	207	1
		Dimens	sions	
Inner D	Diameter		168"	
Le	ngth		2"	
Nominal	Thickness	1.375"		
Corrosion	Inner	0"		
	Outer		0"	
		Weight and	Capacity	
		v	/eight (lb)	Capacity (US gal)
N	ew		414.11	191.92
Cor	roded		414.11	191.92
		Insula	tion	1
		Thickness (in) Density (lb/ft ³)		Weight (lb)
Insulation		4	18	0
		Spacing(in)	Individual Weight (lb)	Total Weight (lb)
Insu Sup	llation ports	0	0	0
Radiography				
Longitud	dinal seam	Full UW-11(a) Type 1		
Right Circum	ferential seam	Full UW-11(a) Type 1		

Results Summary	
Governing condition	Internal pressure
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"
Design thickness due to internal pressure (t)	<u>1.091"</u>
Design thickness due to external pressure (t_e)	<u>0.8941"</u>
Maximum allowable working pressure (MAWP)	<u>314.47 psi</u>
Maximum allowable pressure (MAP)	<u>324.2 psi</u>
Maximum allowable external pressure (MAEP)	<u>42.99 psi</u>
Rated MDMT	-70.3 °F

UCS-66 Material Toughness Requirements		
Material impact test temperature per UG-84 =	-49°F	
$t_r = \frac{255.74 \cdot 84}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	1.0824"	
${ m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872	
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F	
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$	-70.3°F	
Design MDMT of -49°F is acceptable.		

Design thickness, (at 600 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{250 \cdot 84}{19,400 \cdot 1.00 - 0.60 \cdot 250} + 0 = \underline{1.091}"$$

Maximum allowable working pressure, (at 600 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{19,400 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} - 0 = \underline{314.47} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} = \underline{324.2} \text{ psi}$

External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{0.8941} = 190.9811$$

From table G: A = 0.000157

From table CS-2: B = 2,148.5374 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,148.54}{3 \cdot (170.75/0.8941)} = 15 \text{ psi}$$

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.8941 + 0 = 0.8941$ "

Maximum Allowable External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{1.375} = 124.1818$$

From table G: A = 0.000290From table CS-2: B = 4,004.3077 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4,004.31}{3 \cdot (170.75/1.375)} = \underline{42.99} \text{ psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.375}{84.6875}\right) \cdot \left(1 - \frac{84.6875}{\infty}\right) = 0.8118\%$$

The extreme fiber elongation does not exceed 5%.

Allowable Compressive Stress, Hot and Corroded- $\rm S_{\rm CHC},$ (table CS-2)

$$A = rac{0.125}{R_o/t} = rac{0.125}{85.375/1.375} = 0.002013$$

B = 10,328 psi

$$S = {19,400 \over 1.00} = 19,400$$
 psi

 $S_{c\!H\!C}~=~\min~(B,S)=$ 10,328 psi

Allowable Compressive Stress, Hot and New- ${\rm S}_{\rm CHN}$

 $S_cHN=S_cHC=10{,}328\,$ psi

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

B = 15,019 psi

$$S = \frac{20,000}{1.00} = 20,000 \text{ psi}$$

 $S_{c\!C\!N}\ =\ \min\ (B,\!S) =$ 15,019 psi

Allowable Compressive Stress, Cold and Corroded- $\mathsf{S}_{\mathsf{cCC}}$

$$S_{c\mathbb{C}} = S_{cCN} = 15{,}019$$
 psi

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

 $B = 13,139$ psi

$$S = \frac{20,000}{1.00} = 20,000 \text{ psi}$$

 $S_{c\!V\!C}\ =\ \min\ (B,\!S\,)=$ 13,139 psi

24" 300# RFWN MANWAY (M1)

Full UW-11(a) Type 1

Circumferential seam
ASME B16.5-2003 Flange				
Description	NPS 24 Class 300 WN A350 LF2 Cl.1			
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)			
Blind included	Yes			
Rated MDMT	-55°F			
Liquid static head	0 psi			
MAWP rating	570 psi @ 600°F			
MAP rating	740 psi @ 70°F			
Hydrotest rating	1,125 psi @ 70°F			
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography	Full UW-11(a) Type 1			
Bore diameter, B (specified by purchaser)	21.5"			
	Gasket			
Туре	ASME B16.20 Kammprofile			
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel			
Factor, m	2			
Seating Stress, y	2,500 psi			
Thickness, T	0.145"			
Inner Diameter	24.87"			
Outer Diameter 26.87"				
Notes				
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F				

UCS-66 Material Toughness Requirements Nozzle					
Material impact test temperature per UG-84 =	-49°F				
$t_r = rac{255.74\cdot 10.75}{20,000\cdot 1 - 0.6\cdot 255.74} =$	0.1385"				
${ m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.1385 \cdot 1}{1.25 - 0} =$	0.1108				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F				
$MDMT = \min \left[-49, -155 ight] =$	-155°F				
Design MDMT of -49°F is acceptable.					

UCS-66 Material Toughness Requirements Pad				
Material impact test temperature per UG-84 =	-49°F			
$t_r = \frac{255.74 \cdot 0.9 \cdot 168}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 255.74} =$	0.9679"			
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.9679 \cdot 1}{1.3 - 0} =$	0.7446			
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	25.5°F			
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 25.5, -155] =$	-74.5°F			
Design MDMT of -49°F is acceptable.				

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Sum	mary (in)	
For P = 278.01 psi @ 600 °F The opening is adequately reinforced					The nozzle pas	ses UG-45		
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
24.5026	24.5036	4.8575	7.1149		12	0.5312	0.3281	1.25

UG-41 Weld Failure Path Analysis Summary (lb _f)						
All failure paths are stronger than the applicable weld loads						
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength
391,546.18	381,134.34	953,541.94	203,806.7	1,379,167.34	444,184.34	1,050,500.83

UW-16 Weld Sizing Summary					
Weld description	Required weld size (in)	Actual weld size (in)	Status		
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate		

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.25}{11.375}\right) \cdot \left(1 - \frac{11.375}{\infty}\right) = 5.4945 \,\%$$

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Sum	mary (in)	
For P = 286.61 psi @ 70 °F The opening is adequately reinforced					The nozzle pas	ses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
24.503	24.5034	4.8573	7.1149		12	0.5312	0.3281	1.25

UG-41 Weld Failure Path Analysis Summary (lb _f)						
All failure paths are stronger than the applicable weld loads						
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength
403,668.21	392,922	983,032.93	210,110	1,421,822	457,922	1,082,990.55

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sumi	mary (in)	
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced					The nozzle pas	ses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
8.5083	32.2536	12.3453	7.3771		12	0.5312	0.1806	1.25

UG-41 Weld Failure Path Analysis Summary Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description Required weld size (in)		Actual weld size (in)	Status		
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate		
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate		

2" 300# RFWN STEAM OUT (N6A)

Note: round inside edges per UG-76(c)

Location and Orie	ntation			
Located on	Ellipsoidal Head #2			
Orientation	212°			
End of nozzle to datum line	535.3684"			
Calculated as hillside	Yes			
Distance to head center, R	80"			
Passes through a Category A joint	No			
Nozzle				
Description	NPS 2 XXS			
Access opening	No			
Material specification	SA-333 6 Wld & smls pipe (II-D p. 10, ln. 8)			
Inside diameter, new	1.503"			
Pipe nominal wall thickness	0.436"			
Pipe minimum wall thickness ¹	0.3815"			
Corrosion allowance	0"			
Opening chord length	2.6821"			
Projection available outside vessel, Lpr	14.0551"			
Projection available outside vessel to flange face, Lf	16.8051"			
Local vessel minimum thickness	1.3"			
Liquid static head included	0 psi			
Reinforcing Pa	ad			
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)			
Diameter, D _p	8.0104"			
Thickness, t _e	1"			
ls split	No			
Welds				
Inner fillet, Leg ₄₁	0.625"			
Outer fillet, Leg ₄₂	0.625"			
Nozzle to vessel groove weld	1.3"			
Pad groove weld	1"			
Radiography				
Longitudinal seam	Welded pipe			
Circumferential seam	Full UW-11(a) Type 1			

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2003 Flange				
Description	NPS 2 Class 300 WN A350 LF2 Cl.1			
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)			
Blind included	No			
Rated MDMT	-55°F			
Liquid static head	0 psi			
Consider External Loads on Flange MAWP Rating	No			
MAWP rating	570 psi @ 600°F			
MAP rating	740 psi @ 70°F			
Hydrotest rating	1,125 psi @ 70°F			
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography	Full UW-11(a) Type 1			
	Gasket			
Туре	ASME B16.20 Kammprofile			
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel			
Factor, m	2			
Seating Stress, y	2,500 psi			
Thickness, T	0.145"			
Inner Diameter	2.75"			
Outer Diameter	3.5"			
Notes				
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F				

UCS-66 Material Toughness Requirements NozzleImpact test temperature per material specification =-50°FExternal nozzle loadings per UG-22 govern the coincident ratio used.-50°FStress ratio = $\frac{t_r \cdot E^*}{t_n - c} = \frac{0.0523 \cdot 1}{0.3815 - 0} =$ 0.1372Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =-155°F $MDMT = \min [T_{impact} - T_{UCS-66(g)}, -155] = \min [-50 - 5, -155] =$ -155°F

Material is exempt from impact testing at the Design MDMT of -49°F.

UCS-66 Material Toughness Requirements Pad							
Material impact test temperature per UG-84 =							
$t_r = \frac{255.74 \cdot 168}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 255.74} =$							
Stress ratio $=$ $\frac{t_r \cdot E^*}{t_n - c} = \frac{1.0755 \cdot 1}{1.3 - 0} =$							
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =							
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 17.3, -155] =$							
Design MDMT of -49°F is acceptable.							

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Sui	nmary (in)
For P = 299.77 psi @ 600 °F The opening is adequately reinforced						The nozzle p	asses UG-45	
A required	A available	A 1	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
3.6212	4.0527		1.5647		2.1437	0.3443	0.1348	0.3815

UG-41 Weld Failure Path Analysis Summary (Ib _f)									
All failure paths are stronger than the applicable weld loads									
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
70,250.79	78,622.38	90,652.66	56,418.21	142,718.2	98,005.99	144,381.22			

UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.4375	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

WRC 107												
Load Case	P (psi)	P _r (Ib _f)	M ₁ (Ib _f -in)	V ₂ (Ib _f)	M ₂ (Ib _f -in)	V ₁ (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	299.77	-710	-2,208	0	2,208	0	0	18,442	58,200	17,625	29,100	No
Load case 1 (Hot Shut Down)	0	-710	-2,208	0	2,208	0	0	922	58,200	105	29,100	No

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-3	7 Area C	UG-45 Sui	mmary (in)					
For P = 309.04 psi @ 70 °F The opening is adequately reinforced						The nozzle p	asses UG-45	
A required	A available	A 1	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
3.6551	3.9972		1.5164		2.1468	0.334	0.1348	0.3815

UG-41 Weld Failure Path Analysis Summary (Ib _f)										
All failure paths are stronger than the applicable weld loads										
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength				
73,102.64	79,944	92,964.73	56,392.56	146,527.93	99,328.56	148,846.62				

Reinforcement Calculations for MAEP

UG-	37 Area (UG-45 Sui	mmary (in)					
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
1.0702	5.7936	1.8286	1.455		2.176	0.334	0.1348	0.3815

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.4375	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

Nozzle #26 (N26)

ASME Section VIII Division 1, 2004 Edition, A06 Addenda						
<u> </u> 36 ───────────────────────────────────						
6 * * 24						
	-0.3571					
	0.0371					
	1.3					
7.3						
Note: round inside edges per UG-76(c)						
Note: Thread engagement shall comply with the requireme	nts of UG-43(g).					
Location and Orien	tation					
Located on	Ellipsoidal Head #2					
Orientation	0°					
End of nozzle to datum line	550.325"					
Calculated as hillside	No					
Distance to head center, R	0"					
Passes through a Category A joint	No					
Nozzie	Studding Outlet Custom Size Contoured					
Material specification	SA-106 B Smls pipe (II-D p. 10, In. 5)					
Bolt material specification	SA-193 B7 Bolt ≤ 2 1/2 (II-D p. 382, In. 33)					
Bolt rated MDMT	-55°F					
Pad inner diameter	24"					
Pad outer diameter, D _p	36"					
Pad thickness	7.3"					
Figure UG-40 thickness, t _e	5.94"					
Tapped hole diameter	1.5"					
Tapped hole depth	2.38"					
Tapped hole bolt circle	32"					
Raised face height	0.06"					
Raised face outer diameter	27.25"					
Corrosion allowance	0"					
Projection available outside vessel, Lpr	5.94"					
Projection available outside vessel to flange face, Lf	0					
Liquid static head included	0. psi					
Welds						
Inner fillet, Leg ₄₁	0.3571"					
Nozzle to vessel groove weld	1.3"					
Radjography						
Longitudinal seam	Seamless No RT					

ASME B16.5-2003 Blind						
Description	NPS 24 Class 300 Blind A105					
Rated MDMT	-55°F					
Liquid static head	0 psi					
MAWP rating	570 psi @ 600°F					
MAP rating	740 psi @ 70°F					
Hydrotest rating	1,125 psi @ 70°F					
Impact Tested	No					
Notes						
Plind rated MDMT par LICS ($SC(h)(2) = 4EE^{\circ}E(Coincident ratio = 0.24EC)$					

Blind rated MDMT per UCS-66(b)(3) = -155°F (Coincident ratio = 0.3456) Bolts rated MDMT per Fig UCS-66 note (e) = -55°F

UCS-66 Material Toughness Requirements Pad						
Governing thickness, t _g =						
Exemption temperature from Fig UCS-66 Curve B =						
$t_r = rac{255.74 \cdot 0.9 \cdot 168}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 255.74} =$						
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.9679 \cdot 1}{1.3 - 0} =$	0.7446					
Reduction in MDMT, T _R from Fig UCS-66.1 =						
$MDMT = \max [MDMT - T_R, -55] = \max [44.6 - 25.5, -55] =$						
Bolts rated MDMT per Fig UCS-66 note (e) =						
Rated MDMT of 19.1°F > Design MDMT of -49°F.						

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Sumi	mary (in)	
For P = 333.02 psi @ 600 °F The opening is adequately reinforced					The nozzle pas	ses UG-45		
A required	A available	A 1	A ₂	A 3	A ₅	A welds	t _{req}	t _{min}
33.0502	34.487				34.3746	0.1124	0.3281	5.25

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary						
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status			
Pad to shell fillet (Leg ₄₁)	0.25	0.25	weld size is NOT adequate			

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Sum	mary (in)	
For P = 343.28 psi @ 70 °F The opening is adequately reinforced					The nozzle pas	ses UG-45		
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
33.4576	33.4578	0.0038			33.345	0.109	0.3281	5.25

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(1)

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sum	mary (in)	
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced					The nozzle pas	ses UG-45		
A required	A available	A ₁	A ₂	A 3	A ₅	A welds	t _{req}	t _{min}
9.6964	45.6211	12.1671			33.345	0.109	0.1806	5.25

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status			
Pad to shell fillet (Leg ₄₁)	0.25	0.25	weld size is NOT adequate			

Cylinder #1

	ASME Section	VIII Division 1,	2004 Edition, A06 Add	enda			
Com	ponent	Cylinder					
Material		SA-516 70 (II-D p. 14, In. 20)					
Impact Tested	Normalized	Fine Grain Practice	РѠҤТ	Maximize MDMT/ No MAWP			
Yes (-49°F)	Yes	Yes	Yes	No			
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)			
Inte	ernal	250	600	_49			
Ext	ernal	15	400	-+3			
		Static Liqu	uid Head				
Con	dition	P _s (psi)	H _s (in)	SG			
Test h	orizontal	7.47	207	1			
		Dimens	sions				
Inner D	Diameter	168"					
Le	ngth	86"					
Nominal	Thickness	1.375"					
Corrosion	Inner	0"					
	Outer		0"				
		Weight and	Capacity				
		<u>v</u>	/eight (lb)	Capacity (US gal)			
N	ew	· · · · ·	8,252.68				
Cor	roded	· · · ·	17,579.87	8,252.68			
		Insula	tion				
		Thickness (in)	Density (lb/ft ³)	Weight (lb)			
Insu	llation	4	18	1,967.23			
		Spacing(in)	Individual Weight (Ib)	Total Weight (lb)			
Insulation Supports		145 50		50			
		Radiog	raphy				
Longitud	linal seam	Full UW-11(a) Type 1					
Left Circum	ferential seam	Full UW-11(a) Type 1					
Right Circum	ferential seam	Full UW-11(a) Type 1					

Results Summary					
Governing condition	Internal pressure				
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"				
Design thickness due to internal pressure (t)	<u>1.091"</u>				
Design thickness due to external pressure (t_e)	<u>0.8941"</u>				
Maximum allowable working pressure (MAWP)	<u>314.47 psi</u>				
Maximum allowable pressure (MAP)	<u>324.2 psi</u>				
Maximum allowable external pressure (MAEP)	<u>42.99 psi</u>				
Rated MDMT	-70.3 °F				

UCS-66 Material Toughness Requirements	
Material impact test temperature per UG-84 =	-49°F
$t_r = rac{255.74\cdot 84}{20,000\cdot 1 - 0.6\cdot 255.74} =$	1.0824"
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872
Stress ratio longitudinal $=$ $\frac{8,057 \cdot 1}{20,000 \cdot 1} =$	0.4029
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$	-70.3°F
Design MDMT of -49°F is acceptable.	

Design thickness, (at 600 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{250 \cdot 84}{19,400 \cdot 1.00 - 0.60 \cdot 250} + 0 = \underline{1.091}"$$

Maximum allowable working pressure, (at 600 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{19,400 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} - 0 = \underline{314.47} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} = \frac{324.2}{824.2} \text{ psi}$

External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{0.8941} = 190.9811$$

From table G: A = 0.000157

From table CS-2: B = 2,148.5374 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,148.54}{3 \cdot (170.75/0.8941)} = 15 \text{ psi}$$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.8941 + 0 = 0.8941$ "

Maximum Allowable External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{1.375} = 124.1818$$

From table G: A = 0.000290

From table CS-2: B = 4,004.3077 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 4,004.31}{3 \cdot (170.75/1.375)} = rac{42.99}{42.99} \, \mathrm{psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.375}{84.6875}\right) \cdot \left(1 - \frac{84.6875}{\infty}\right) = 0.8118\%$$

The extreme fiber elongation does not exceed 5%.

Allowable Compressive Stress, Hot and Corroded- $\rm S_{\rm CHC},$ (table CS-2)

$$A = rac{0.125}{R_o/t} = rac{0.125}{85.375/1.375} = 0.002013$$

B = 10,328 psi

$$S = {19,400 \over 1.00} = 19,400$$
 psi

 $S_{c\!H\!C}~=~\min~(B,S)=$ 10,328 psi

Allowable Compressive Stress, Hot and New- ${\rm S}_{\rm CHN}$

 $S_cHN=S_cHC=10{,}328\,$ psi

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

B = 15,019 psi

$$S = \frac{20,\!000}{1.00} = 20,\!000 \;\; \mathrm{psi}$$

 $S_{c\!C\!N}\ =\ \min\ (B,\!S) =$ 15,019 psi

Allowable Compressive Stress, Cold and Corroded- $\mathsf{S}_{\mathsf{cCC}}$

$$S_{c\mathbb{C}} = S_{cCN} = 15{,}019$$
 psi

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

 $B = 13,139$ psi

$$S = \frac{20,000}{1.00} = 20,000 \text{ psi}$$

 $S_{c\!V\!C}\ =\ \min\ (B,\!S\,)=$ 13,139 psi

20" 300# RFWN VAPOUR OUTLET (N2)

Note: round inside edges per UG-76(c)

Location and Orientation						
Located on	Cylinder #1					
Orientation	0°					
Nozzle center line offset to datum line	479"					
End of nozzle to shell center	123"					
Passes through a Category A joint	No					
Nozzle						
Access opening	No					
Material specification	SA-516 70 (II-D p. 14, ln. 20)					
Inside diameter, new	18"					
Nominal wall thickness	1"					
Corrosion allowance	0"					
Projection available outside vessel, Lpr	31.245"					
Projection available outside vessel to flange face, Lf	37.625"					
Local vessel minimum thickness	1.375"					
Liquid static head included	0 psi					
Reinforcing Pa	d					
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)					
Diameter, D _p	30"					
Thickness, t _e	1.5"					
Is split	No					
Welds						
Inner fillet, Leg ₄₁	0.375"					
Outer fillet, Leg ₄₂	0.625"					
Nozzle to vessel groove weld	1.375"					
Pad groove weld	1.5"					
Radiography						
Longitudinal seam	Full UW-11(a) Type 1					
Circumferential seam	Full UW-11(a) Type 1					

ASME B16.5-2003 Flange					
Description	NPS 20 Class 300 WN A350 LF2 Cl.1				
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)				
Blind included	No				
Rated MDMT	-55°F				
Liquid static head	0 psi				
Consider External Loads on Flange MAWP Rating	No				
MAWP rating	570 psi @ 600°F				
MAP rating	740 psi @ 70°F				
Hydrotest rating	1,125 psi @ 70°F				
PWHT performed	Yes				
Impact Tested	No				
Circumferential joint radiography	Full UW-11(a) Type 1				
Bore diameter, B (specified by purchaser)	18"				
	Gasket				
Туре	ASME B16.20 Kammprofile				
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel				
Factor, m	2				
Seating Stress, y	2,500 psi				
Thickness, T	0.145"				
Inner Diameter	20.87"				
Outer Diameter	22.87"				
Notes					
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F					

UCS-66 Material Toughness Requirements Nozzle					
External nozzle loadings per UG-22 govern the coincident ratio used.					
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.14 \cdot 1}{1 - 0} =$	0.14				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F				
Material is exempt from impact testing at the Design MDMT	of -49°F.				

UCS-66 Material Toughness Requirements Pad	
Material impact test temperature per UG-84 =	-49°F
$t_r = \frac{255.74 \cdot 84}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	1.0824"
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872
$Stress ratio longitudinal = {8,057 \cdot 1 \over 20,000 \cdot 1} =$	0.4029
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$	-70.3°F
Design MDMT of -49°F is acceptable.	

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Summ	ary (in)
For P = 293.76 psi @ 600 °F The opening is adequately reinforced						The nozzle pass	es UG-45	
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
23.1048	23.1061	1.6452	5.9297	-	15	0.5312	0.3281	1

UG-41 Weld Failure Path Analysis Summary (lb _f)									
All failure paths are stronger than the applicable weld loads									
Weld load W	Weld load Weld load Path 1-1 W W ₁₋₁ strength		Path 1-1 Weld load strength W ₂₋₂		Weld load W ₃₋₃	Path 3-3 strength			
419,862.56	416,341.46	685,271.68	171,113.82	1,408,635.16	469,691.46	900,109.49			

UW-16 Weld Sizing Summary							
Weld description	Required weld size (in)	Actual weld size (in)	Status				
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate				

WRC 107												
Load Case	P (psi)	P _r (Ib _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	293.76	-6,295	-313,068	0	313,068	0	0	26,077	58,200	20,583	29,100	No
Load case 1 (Hot Shut Down)	0	-6,295	-313,068	0	313,068	0	0	8,131	58,200	1,800	29,100	No

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1}{9.5}\right) \cdot \left(1 - \frac{9.5}{\infty}\right) = 5.2632\%$$

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Summ	ary (in)	
For P = 302.84 psi @ 70 °F The opening is adequately reinforced					The nozzle pass	es UG-45			
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}	
23.1048	23.1061	1.6452	5.9297		15	0.5312	0.3281 1		

UG-41 Weld Failure Path Analysis Summary (Ib _f)									
	All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
432,848	429,218	706,465.64	176,406	1,452,201.2	484,218	927,947.93			

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)							UG-45 Summ	ary (in)
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced						The nozzle pass	es UG-45	
A required	A available	A 1	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
12.375	21.509		5.9778		15	0.5312	0.1808	1

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (in)	Actual weld size (in)	Status				
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate				

16" 300# RFWN HYDROCARBON OUTLET (N3)

Note: round inside edges per UG-76(c)

Location and Orientation					
Located on	Cylinder #1				
Orientation	180°				
Nozzle center line offset to datum line	482"				
End of nozzle to shell center	103.375"				
Passes through a Category A joint	No				
Nozzle					
Description	NPS 16 Sch 100				
Access opening	No				
Material specification	SA-333 6 Wld & smls pipe (II-D p. 10, ln. 8)				
Inside diameter, new	13.938"				
Pipe nominal wall thickness	1.031"				
Pipe minimum wall thickness ¹	0.9021"				
Corrosion allowance	0"				
Projection available outside vessel, Lpr	12.25"				
Projection available outside vessel to flange face, Lf	18"				
Local vessel minimum thickness	1.375"				
Liquid static head included	0 psi				
Reinforcing Pa	ad				
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)				
Diameter, D _p	24"				
Thickness, t _e	1.5"				
Is split	No				
Welds					
Inner fillet, Leg ₄₁	0.375"				
Outer fillet, Leg ₄₂	0.625"				
Nozzle to vessel groove weld	1.375"				
Pad groove weld	1.5"				
Radiography	/				
Longitudinal seam	Welded pipe				
Circumferential seam	Full UW-11(a) Type 1				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2003 Flange					
Description	NPS 16 Class 300 WN A350 LF2 Cl.1				
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)				
Blind included	No				
Rated MDMT	-55°F				
Liquid static head	0 psi				
Consider External Loads on Flange MAWP Rating	No				
MAWP rating	570 psi @ 600°F				
MAP rating	740 psi @ 70°F				
Hydrotest rating	1,125 psi @ 70°F				
PWHT performed	Yes				
Impact Tested	No				
Circumferential joint radiography	Full UW-11(a) Type 1				
Bore diameter, B (specified by purchaser)	13.938"				
	Gasket				
Туре	ASME B16.20 Kammprofile				
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel				
Factor, m	2				
Seating Stress, y	2,500 psi				
Thickness, T	0.145"				
Inner Diameter	16.63"				
Outer Diameter	18.37"				
	Notes				
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F					

UCS-66 Material Toughness Requirements Nozzle						
Impact test temperature per material specification =						
External nozzle loadings per UG-22 govern the coincident ratio used.						
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.1374 \cdot 1}{0.9021 - 0} =$	0.1523					
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F					
$MDMT = \min ig[T_{impact} - T_{UCS-66(g)} \ , -155ig] = \min ig[-50 - 5, -155ig] =$						
Material is exempt from impact testing at the Design MDMT of -49°F.						

UCS-66 Material Toughness Requirements Pad					
Material impact test temperature per UG-84 =	-49°F				
$t_r = rac{255.74\cdot 84}{20,000\cdot 1 - 0.6\cdot 255.74} =$	1.0824"				
${ m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872				
$Stress ratio longitudinal = {8,057 \cdot 1 \over 20,000 \cdot 1} =$	0.4029				
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F				
$MDMT = \max \left[T_{impact} - T_R, -155 ight] = \max \left[-49 - 21.3, -155 ight] =$	-70.3°F				
Design MDMT of -49°F is acceptable.					

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Sui	mmary (in)
For P = 303.24 psi @ 600 °F The opening is adequately reinforced					The nozzle p	asses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
18.7981	18.7983	0.6786	5.6052		12	0.5145	0.3281	0.9021

UG-41 Weld Failure Path Analysis Summary (Ib _f)									
All failure paths are stronger than the applicable weld loads									
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
353,266.16	351,522.18	514,158.51	159,624.93	1,116,286.4	400,002.57	720,087.59			

UW-16 Weld Sizing Summary							
Weld description	Required weld size (in)	Actual weld size (in)	Status				
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate				

WRC 107												
Load Case	P (psi)	P _r (Ib _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	303.24	-5,035	-198,360	0	198,360	0	0	25,802	58,200	20,042	29,100	No
Load case 1 (Hot Shut Down)	0	-5,035	-198,360	0	198,360	0	0	7,277	58,200	1,517	29,100	No

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Sui	mmary (in)
For P = 310.43 psi @ 70 °F The opening is adequately reinforced						The nozzle p	asses UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
18.7367	18.7373	0.8039	5.4226		12	0.5108	0.3281	0.9021

UG-41 Weld Failure Path Analysis Summary (Ib _f)								
All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength		
360,734.9	358,668	521,085.72	159,338.78	1,148,368.35	407,150.78	742,358.34		

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)							UG-45 Sui	nmary (in)
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced						The nozzle p	asses UG-45	
A required	A available	A 1	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
9.7879	18.0788		5.568		12	0.5108	0.1808	0.9021

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld size (in)	Actual weld size (in)	Status				
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate				

8" 300# RFWN VENT (N4)

Note: round inside edges per UG-76(c)

Location and Orientation					
Located on	Cylinder #1				
Orientation	0°				
Nozzle center line offset to datum line	430"				
End of nozzle to shell center	123"				
Passes through a Category A joint	No				
Nozzle					
Description	NPS 8 Sch 120				
Access opening	No				
Material specification	SA-333 6 Wld & smls pipe (II-D p. 10, In. 8)				
Inside diameter, new	7.187"				
Pipe nominal wall thickness	0.719"				
Pipe minimum wall thickness ¹	0.6291"				
Corrosion allowance	0"				
Projection available outside vessel, Lpr	33.245"				
Projection available outside vessel to flange face, Lf	37.625"				
Local vessel minimum thickness	1.375"				
Liquid static head included	0 psi				
Reinforcing Pa	ad				
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)				
Diameter, D _p	14.125"				
Thickness, t _e	1"				
Is split	No				
Welds					
Inner fillet, Leg ₄₁	0.375"				
Outer fillet, Leg ₄₂	0.625"				
Nozzle to vessel groove weld	1.375"				
Pad groove weld	1"				
Radiography					
Longitudinal seam	Welded pipe				
Circumferential seam	Full UW-11(a) Type 1				

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2003 Flange					
Description	NPS 8 Class 300 WN A350 LF2 Cl.1				
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)				
Blind included	No				
Rated MDMT	-55°F				
Liquid static head	0 psi				
Consider External Loads on Flange MAWP Rating	No				
MAWP rating	570 psi @ 600°F				
MAP rating	740 psi @ 70°F				
Hydrotest rating	1,125 psi @ 70°F				
PWHT performed	Yes				
Impact Tested	No				
Circumferential joint radiography	Full UW-11(a) Type 1				
	Gasket				
Туре	ASME B16.20 Kammprofile				
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel				
Factor, m	2				
Seating Stress, y	2,500 psi				
Thickness, T	0.145"				
Inner Diameter	9"				
Outer Diameter	10.5"				
Notes					
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F					

UCS-66 Material Toughness Requirements Nozzle					
Impact test temperature per material specification =	-50°F				
External nozzle loadings per UG-22 govern the coincident ratio used.					
${ m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.1014 \cdot 1}{0.6291 - 0} =$	0.1611				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F				
$MDMT = \min \left[T_{impact} - T_{UCS-66(g)}, -155 ight] = \min \left[-50 - 5, -155 ight] =$					
Material is exempt from impact testing at the Design MDMT of -49°F.					

UCS-66 Material Toughness Requirements Pad					
Material impact test temperature per UG-84 =	-49°F				
$t_r = rac{255.74 \cdot 84}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	1.0824"				
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872				
$Stress ratio longitudinal = rac{8,057 \cdot 1}{20,000 \cdot 1} =$	0.4029				
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F				
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$	-70.3°F				
Design MDMT of -49°F is acceptable.					

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-3	7 Area C	UG-45 Summary (in)		
	For P = The openin	The nozzle p	asses UG-45	
A required	A available	t _{req}	t _{min}	
9.5682	9.5684	0.2818	0.6291	

	UG-41 Weld Failure Path Analysis Summary (lb _f)										
	All failure paths are stronger than the applicable weld loads										
Weld load Weld load Path 1-1 Weld load Path 2-2 Weld load Path 3- W W1-1 strength W2-2 strength W3-3 strength											
177,309.62 175,480.76 238,702.28 99,872.13 504,499.75 209,290.07 399,254											

UW-16 Weld Sizing Summary								
Weld description	Required weld size (in)	Actual weld size (in)	Status					
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate					
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate					

WRC 107												
Load Case	P (psi)	P _r (Ib _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	297.58	-2,520	-50,544	0	50,544	0	0	22,149	58,200	19,205	29,100	No
Load case 1 (Hot Shut Down)	0	-2,520	-50,544	0	50,544	0	0	3,970	58,200	656	29,100	No

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-	37 Area (UG-45 Summary (in)							
For P = 304.18 psi @ 70 °F The opening is adequately reinforced							The nozzle passes UG-45		
A required	A available	t _{req}	t _{min}						
9.5353	9.5355	0.2818	0.6291						

	UG-41 Weld Failure Path Analysis Summary (lb _f)										
All failure paths are stronger than the applicable weld loads											
Weld load W	Weld load W Weld load Path 1-1 strength Weld load W2-2 Path 2-2 strength Weld load W3-3 Path 3-3 strength										
180,855.67 178,754 242,779.23 99,762.98 518,786.24 212,564.98 411,602.63											

Reinforcement Calculations for MAEP

UG-37	Area Ca	UG-45 Summary (in)						
т	For Pe = he opening	The nozzle p	asses UG-45					
A required	A available	A welds	t _{req}	t _{min}				
5.0844 8.817 - 3.0567 - 5.5 0.2603							0.1808	0.6291

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

3" 300# RFWN LG/LT (SIS) BRIDLE (J2A)

Description	NPS 3 Sch 160		
Access opening	No		
Material specification	SA-333 6 Wld & smls pipe (II-D p. 10, In. 8)		
Inside diameter, new	2.624"		
Pipe nominal wall thickness	0.438"		
Pipe minimum wall thickness ¹	0.3833"		
Corrosion allowance	0"		
Opening chord length	5.6967"		
Projection available outside vessel, Lpr	10.3158"		
Projection available outside vessel to flange face, Lf	13.4358"		
Local vessel minimum thickness	1.375"		
Liquid static head included	0 psi		
Reinforcing Pa	ad		
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)		
Diameter, D _p	13.3486"		
Thickness, t _e	1"		
Is split	No		
Welds			
Inner fillet, Leg ₄₁	1"		
Outer fillet, Leg ₄₂	0.75"		
Nozzle to vessel groove weld	1.375"		
Pad groove weld	1"		
Radiography			
Longitudinal seam	Welded pipe		
Circumferential seam	Full UW-11(a) Type 1		

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME	B16.5-2003 Flange					
Description	NPS 3 Class 300 WN A350 LF2 Cl.1					
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)					
Blind included	No					
Rated MDMT	-55°F					
Liquid static head	0 psi					
Consider External Loads on Flange MAWP Rating	No					
MAWP rating	570 psi @ 600°F					
MAP rating	740 psi @ 70°F					
Hydrotest rating	1,125 psi @ 70°F					
PWHT performed	Yes					
Impact Tested	No					
Circumferential joint radiography	Full UW-11(a) Type 1					
	Gasket					
Туре	ASME B16.20 Kammprofile					
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel					
Factor, m	2					
Seating Stress, y	2,500 psi					
Thickness, T	0.145"					
Inner Diameter	3.87"					
Outer Diameter	4.87"					
Notes						
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F						

UCS-66 Material Toughness Requirements NozzleImpact test temperature per material specification = -50° FExternal nozzle loadings per UG-22 govern the coincident ratio used. $Stress ratio = \frac{t_r \cdot E^*}{t_n - c} = \frac{0.058 \cdot 1}{0.3833 - 0} =$ 0.1512Stress ratio < 0.35, MDMT per UCS-66(b)(3) =</td> -155° F $MDMT = \min [T_{impact} - T_{UCS-66(g)}, -155] = \min [-50 - 5, -155] =$ -155° FMaterial is exempt from impact testing at the Design MDMT of -49°F.

UCS-66 Material Toughness Requirements Pad						
Material impact test temperature per UG-84 =						
$t_r = \frac{255.74 \cdot 84}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	1.0824"					
${ m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872					
$Stress ratio longitudinal = {8,057 \cdot 1 \over 20,000 \cdot 1} =$	0.4029					
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =						
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$	-70.3°F					
Design MDMT of -49°F is acceptable.						

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG	-37 Area	UG-45 Su	ımmary (in)	
	For The oper	The nozzle	passes UG-45	
A required	A available	A welds	t _{req}	t _{min}
7.2115	7.2117	0.8814	0.189	0.3833

UG-41 Weld Failure Path Analysis Summary (lb _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
127,578.52	125,609.18	174,707.86	67,736	233,515.76	146,205.12	258,014.44	

UW-16 Weld Sizing Summary							
Weld description	Required weld size (in)	Actual weld size (in)	Status				
Nozzle to pad fillet (Leg ₄₁)	0.25	0.7	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	0.375	0.525	weld size is adequate				

WRC 107												
Load Case	P (psi)	P _r (lb _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	284.6	-945	-5,136	0	5,136	0	0	18,421	58,200	17,523	29,100	No
Load case 1 (Hot Shut Down)	0	-945	-5,136	0	5,136	0	0	1,035	58,200	137	29,100	No

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Տւ	ımmary (in)
For P = 291.29 psi @ 70 °F The opening is adequately reinforced						The nozzle	passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
7.1929	7.1932	0.7847	1.5003		4.0532	0.855	0.189	0.3833

UG-41 Weld Failure Path Analysis Summary (lb _f)								
All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength		
130,273.54	128,170	179,331.29	67,702.95	239,313.18	148,766.95	265,994.27		

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)							UG-45 Sui	nmary (in)
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced						The nozzle p	asses UG-45	
A required	A available	A 1	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
3.9795	6.2672		1.438		3.9742	0.855	0.1808	0.3833

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary								
Weld description	Required weld size (in)	Actual weld size (in)	Status					
Nozzle to pad fillet (Leg ₄₁)	0.25	0.7	weld size is adequate					
Pad to shell fillet (Leg ₄₂)	0.375	0.525	weld size is adequate					

Cylinder #2

	ASME Section VIII Division 1, 2004 Edition, A06 Addenda							
Com	ponent	Cylinder						
Ma	terial	SA-516 70 (II-D p. 14, In. 20)						
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP				
Yes (-49°F)	Yes	Yes	Yes	No				
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)				
Inte	ernal	250	600	_49				
Ext	ernal	15	400					
		Static Liqu	uid Head					
Con	dition	P _s (psi)	H _s (in)	SG				
Test h	orizontal	7.47	207	1				
	Dimensions							
Inner [Diameter	168"						
Le	ngth	120"						
Nominal	Thickness	1.25"						
Corrosion	Inner	0"						
	Outer	0"						
		Weight and	Capacity					
		v	/eight (lb)	Capacity (US gal)				
N	ew	:	11,515.37					
Cor	roded		21,433.27	11,515.37				
		Insula	tion					
		Thickness (in)	Density (lb/ft ³)	Weight (lb)				
Insu	llation	4	18	2,741.05				
		Spacing(in)	Individual Weight (lb)	Total Weight (lb)				
Insulation Supports		145	50	50				
		Radiog	raphy					
Longitud	dinal seam	Full UW-11(a) Type 1						
Left Circum	ferential seam	Full UW-11(a) Type 1						
Right Circum	ferential seam	Full UW-11(a) Type 1						

Results Summary							
Governing condition	Internal pressure						
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"						
Design thickness due to internal pressure (t)	<u>1.091"</u>						
Design thickness due to external pressure (t_e)	<u>0.8932"</u>						
Maximum allowable working pressure (MAWP)	<u>286.14 psi</u>						
Maximum allowable pressure (MAP)	<u>294.99 psi</u>						
Maximum allowable external pressure (MAEP)	<u>34.38 psi</u>						
Rated MDMT	-62.4 °F						

UCS-66 Material Toughness Requirements						
Material impact test temperature per UG-84 =	-49°F					
$t_r = rac{255.74\cdot 84}{20,000\cdot 1 - 0.6\cdot 255.74} =$	1.0824"					
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.25 - 0} =$	0.8659					
$ ext{Stress ratio longitudinal} = rac{8,057\cdot 1}{20,000\cdot 1} =$	0.4029					
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	13.4°F					
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 13.4, -155] =$	-62.4°F					
Design MDMT of -49°F is acceptable.						

Design thickness, (at 600 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{250 \cdot 84}{19,400 \cdot 1.00 - 0.60 \cdot 250} + 0 = \underline{1.091}"$$

Maximum allowable working pressure, (at 600 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{19,400 \cdot 1.00 \cdot 1.25}{84 + 0.60 \cdot 1.25} - 0 = \underline{286.14} \text{ psi}$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 1.25}{84 + 0.60 \cdot 1.25} = \underline{294.99}$ psi

External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.5} = 3.1202$$
$$\frac{D_o}{t} = \frac{170.5}{0.8932} = 190.8780$$

From table G: A = 0.000156

From table CS-2: B = 2,147.3783 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,147.38}{3 \cdot (170.5/0.8932)} = 15 \text{ psi}$$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.8932 + 0 = 0.8932$ "

Maximum Allowable External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.5} = 3.1202$$
$$\frac{D_o}{t} = \frac{170.5}{1.25} = 136.4000$$

From table G: A = 0.000255

From table CS-2: B = 3,516.96 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 3,516.96}{3 \cdot (170.5/1.25)} = \underline{34.38} \text{ psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.25}{84.625}\right) \cdot \left(1 - \frac{84.625}{\infty}\right) = 0.7386\%$$

The extreme fiber elongation does not exceed 5%.

Allowable Compressive Stress, Hot and Corroded- $\rm S_{\rm CHC},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.25/1.25} = 0.001833$$

B = 10,131 psi

$$S = \frac{19,400}{1.00} = 19,400$$
 psi

 $S_{c\!H\!C}~=~\min~(B,S)=$ 10,131 psi

Allowable Compressive Stress, Hot and New- ${\rm S}_{\rm CHN}$

 $S_cHN = S_cHC = 10,131$ psi

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.25/1.25} = 0.001833$$

 $B = 14,\!630$ psi

$$S = \frac{20,\!000}{1.00} = 20,\!000 \;\; \mathrm{psi}$$

 $S_{c\!C\!N}~=~\min~(B,S)=$ 14,630 psi

Allowable Compressive Stress, Cold and Corroded- $\mathsf{S}_{\mathsf{cCC}}$

 $S_{c\mathbb{C}} = S_{cCN} = 14,\!630$ psi

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.25/1.25} = 0.001833$$

 $B = 12,\!847$ psi

$$S = \frac{20,\!000}{1.00} = 20,\!000 \; \text{ psi}$$

 $S_{c\!V\!C}\ =\ \min\ (B,\!S\,)=$ 12,847 psi

60" BOOT (BOOT)

ASME Section VIII Division 1,	, 2004 Edition, A06 Addenda
Note: round inside edges per UG-76(c)	
Location and	Orientation
Located on	Cylinder #2
Orientation	180°
Nozzle center line offset to datum line	358"
End of nozzle to shell center	166"
Passes through a Category A joint	No
Noz	
Access opening	NO
	GA-510 70 (Π-D β. 14, Π. 20) (ΠοιΠαιίζεα)
Nominal wall thickness	2"
Corrosion allowance	0"
Projection available outside vessel. Lpr	80.75"
Local vessel minimum thickness	1.25"
User input radial limit of reinforcement	56"
Liquid static head included	0 psi
Reinforc	ing Pad
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)
Diameter, D _p	88"
Thickness, t _e	2"
Is split	No
Wel	ds
Inner fillet, Leg ₄₁	1"
Outer fillet, Leg ₄₂	1"
Nozzle to vessel groove weld	1.25"
Pad groove weld	2"
Radiog	raphy
Longitudinal seam	Full UW-11(a) Type 1
Circumferential seam	Full UW-11(a) Type 1

UCS-66 Material Toughness Requirements Nozzle At Intersection						
Material impact test temperature per UG-84 =	-49°F					
$t_r = rac{255.74\cdot 84}{20,000\cdot 1 - 0.6\cdot 255.74} =$	1.0824"					
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.25 - 0} =$	0.8659					
Stress ratio longitudinal = $\frac{8,057 \cdot 1}{20,000 \cdot 1}$ =	0.4029					
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	13.4°F					
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 13.4, -155] =$	-62.4°F					
Design MDMT of -49°F is acceptable.						

UCS-66 Material Toughness Requirements Nozzle							
Material impact test temperature per UG-84 =	-49°F						
$t_r = rac{255.74 \cdot 30}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	0.3866"						
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.3866 \cdot 1}{2 - 0} =$	0.1933						
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F						
$MDMT = \min \left[-49, -155 ight] =$	-155°F						
Design MDMT of -49°F is acceptable.							

UCS-66 Material Toughness Requirements Pad						
Material impact test temperature per UG-84 =						
$t_r = rac{255.74 \cdot 84}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	1.0824"					
$ ext{Stress ratio} = rac{t_r \cdot \overline{E}^*}{t_n - c} = rac{1.0824 \cdot 1}{1.25 - 0} =$	0.8659					
$Stress ratio longitudinal = rac{8,057 \cdot 1}{20,000 \cdot 1} =$						
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =						
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 13.4, -155] =$						
Design MDMT of -49°F is acceptable.						

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)				UG-45 Summary (in)				
For P = 255.74 psi @ 600 °F The opening is adequately reinforced					The nozzle passes UG-45			
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
66.9684	66.9694	6.9607	10.0087		48	2	0.3986	2
UG-41 Weld Failure Path Analysis Summary (lb _f)								
--	--------------	--------------	------------	----------------------	-------------------------------	----------------------	--	
All failure paths are stronger than the applicable weld loads								
Weld load Weld load Path 1-1 Wel W W1-1 strength W				Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength		
1,174,536.92	1,164,168.78	3,959,110.44	310,568.78	5,646,120.56	1,261,168.78	3,118,043.26		

UW-16 Weld Sizing Summary						
Weld description	Required weld size (in)	Actual weld size (in)	Status			
Nozzle to pad fillet (Leg ₄₁)	0.25	0.7	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	0.375	0.7	weld size is adequate			

Check Large Opening per Appendix 1-7(a)

Area required within 75 percent of the limits of reinforcement = $2/3^{*}A = (2/3)^{*}66.9684 = 44.6456 \text{ in}^{2}$

- L_{R} = max $[d, R_n + (t_n C_n) + (t C)]$
 - $= \max [60, \ 30 + (2 0) + (1.25 0)]$
 - = 45 in

$$\mathsf{A}_1 \quad = \quad (2 \cdot L_R - d) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (2 \cdot 45 60) \cdot (1 \cdot 1.25 1 \cdot 1.1161) 2 \cdot 2 \cdot (1 \cdot 1.25 1 \cdot 1.1161) \cdot (1 1)$
- = 4.0158 in²

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

$$= (88 - 60 - 2 \cdot 2) \cdot 2 \cdot 1$$

= 48 in²

Area = $A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 4.0158 + 10.0087 + 0 + 1 + 1 + 0 + 48
- = 64.0245 in²

The area replacement requirements of Appendix 1-7(a) are satisfied.

Check Large Opening per Appendix 1-7(b)

1-7(b)(1)(a)	$D_i = 168 \;\; { m in} > 60 \;\; { m in}$	True
1-7(b)(1)(b)	d=60 in >40 in	True
1-7(b)(1)(b)	$d = 60$ in $> 3.4 \cdot \sqrt{84 \cdot 1.25} = 34.8396$ in	True
1-7(b)(1)(c)	$rac{R_n}{R} = rac{30}{84} = 0.3571 \le 0.7$	True
1-7(b)(1)	Radial nozzle in cylinder or cone	True
1-7(b)(1)	Internal projection not present	True

$$S_m = P \cdot \left(\frac{R \cdot (R_n + t_n + \sqrt{R_m \cdot t}) + R_n \cdot (t + t_e + \sqrt{R_{nm} \cdot t_n})}{A_s}\right)$$

= 255.7371 \cdot $\left(\frac{84 \cdot (30 + 2 + \sqrt{84.625 \cdot 1.25}) + 30 \cdot (1.25 + 2 + \sqrt{31 \cdot 2})}{55.67427}\right)$
= 17,849 psi

Note that area A_{s} includes consideration of UG-41.

$$M = \left(\frac{R_n^3}{6} + R \cdot R_n \cdot e\right) \cdot P$$

= $\left(\frac{30^3}{6} + 84 \cdot 30 \cdot 10.355649\right) \cdot 255.7371$
= 7,824,591.2 lb_f-in

$$S_{b} = \frac{M \cdot a}{I}$$

= $\frac{7,824,591.2 \cdot 10.980649}{14,934.06983}$
= 5,753 psi

=

Allowable bending stress need not include a strength reduction factor per UG-41.

 $S_m + S_b = 23,\!602 \le 1.5 \cdot 19,\!400 = 29,\!100;$ satisfactory.

 $S_m = 17,\!849 \le 19,\!400;$ satisfactory.

R_n / R = 0.3571 does not exceed 0.7 so a U-2(g) analysis is not required per 1-7(b)(1)(c).

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 2}{31}\right) \cdot \left(1 - \frac{31}{\infty}\right) = 3.2258\%$$

The extreme fiber elongation does not exceed 5%.

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)						UG-45 Summ	ary (in)	
For P = 263.64 psi @ 70 °F The opening is adequately reinforced						The nozzle pass	es UG-45	
A required	A available	A ₁	A ₂	Α3	А ₅	A welds	t _{req}	t _{min}
66.9672	66.9705	6.9618	10.0087	-	48	2	0.3986	2

UG-41 Weld Failure Path Analysis Summary (lb _f)							
All failure paths are stronger than the applicable weld loads							
Weld load Weld load Path 1-1 W W ₁₋₁ strength		Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
1,210,818.4	1,200,174	4,081,557.16	320,174	5,820,742.84	1,300,174	3,214,477.59	

Area required within 75 percent of the limits of reinforcement = $2/3^{*}A = (2/3)^{*}66.9672 = 44.6448 \text{ in}^{2}$

 $\max [d, R_n + (t_n - C_n) + (t - C)]$ LR = $\max [60, \ 30 + (2 - 0) + (1.25 - 0)]$ = = 45 in A_1 $(2\cdot L_R-d)\cdot (E_1\cdot t-F\cdot t_r)-2\cdot t_n\cdot (E_1\cdot t-F\cdot t_r)\cdot (1-f_{r1})$ = $(2\cdot 45-60)\cdot (1\cdot 1.25-1\cdot 1.1161)-2\cdot 2\cdot (1\cdot 1.25-1\cdot 1.1161)\cdot (1-1)$ = 4.0164 in^2 = A_5 $(D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$ = $(88 - 60 - 2 \cdot 2) \cdot 2 \cdot 1$ = 48 in^2 = $A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$ Area = 4.0164 + 10.0087 + 0 + 1 + 1 + 0 + 48= = 64.0251 in²

The area replacement requirements of Appendix 1-7(a) are satisfied.

Check Large Opening per Appendix 1-7(b)

1-7(b)(1)(a)	$D_i=168~~{ m in}>60~~{ m in}$	True
1-7(b)(1)(b)	$d=60~{ m in}>40~{ m in}$	True
1-7(b)(1)(b)	$d = 60$ in $> 3.4 \cdot \sqrt{84 \cdot 1.25} = 34.8396$ in	True
1-7(b)(1)(c)	$rac{R_n}{R} = rac{30}{84} = 0.3571 \le 0.7$	True
1-7(b)(1)	Radial nozzle in cylinder or cone	True
1-7(b)(1)	Internal projection not present	True
<i>S</i> =	$P \cdot \left(rac{R \cdot \left(R_n + t_n + \sqrt{R_m \cdot t} ight) + R_n \cdot \left(t ight) ight)$	$+t_e+\sqrt{R_{nm}}$

$$S_m = P \cdot \left(\frac{R \cdot (R_n + t_n + \sqrt{R_m \cdot t}) + R_n \cdot (t + t_e + \sqrt{R_{nm} \cdot t_n})}{A_s} \right)$$

= 263.6406 \cdot $\left(\frac{84 \cdot (30 + 2 + \sqrt{84.625 \cdot 1.25}) + 30 \cdot (1.25 + 2 + \sqrt{31 \cdot 2})}{55.67427} \right)$
= 18,400 psi

Note that area A_{s} includes consideration of UG-41.

$$M = \left(\frac{R_n^3}{6} + R \cdot R_n \cdot e\right) \cdot P$$

= $\left(\frac{30^3}{6} + 84 \cdot 30 \cdot 10.355649\right) \cdot 263.6406$
= $8,066,410.9$ lb *f*-in

$$S_{b} = \frac{M \cdot a}{I}$$

= $\frac{8,066,410.9 \cdot 10.980649}{14,934.06983}$

= 5,931 psi

Allowable bending stress need not include a strength reduction factor per UG-41.

 $S_m + S_b = 24,331 \le 1.5 \cdot 20,000 = 30,000;$ satisfactory.

 $S_m = 18,400 \leq 20,000;$ satisfactory.

 $R_n / R = 0.3571$ does not exceed 0.7 so a U-2(g) analysis is not required per 1-7(b)(1)(c).

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)					UG-45 Summ	ary (in)			
For Pe = 34.38 psi @ 400 °F The opening is adequately reinforced					The nozzle pass	es UG-45			
A required	A available	A 1	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}		
37.5	60.3795		10.3795		48	2	0.3393	2	

UG-41 Weld Failure Path Analysis Summary Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld size (in)	Actual weld size (in)	Status			
Nozzle to pad fillet (Leg ₄₁)	0.25	0.7	weld size is adequate			
Pad to shell fillet (Leg ₄₂)	0.375	0.7	weld size is adequate			

Check Large Opening per Appendix 1-7(a)

Area required within 75 percent of the limits of reinforcement = 2 / $3^*A = (2 / 3)^*37.5 = 25 \text{ in}^2$

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max [60, \ 30 + (2 0) + (1.25 0)]$
 - = 45 in

$$\mathsf{A}_1 \quad = \quad (2 \cdot L_R - d) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$$

$$= (2 \cdot 45 - 60) \cdot (1 \cdot 1.25 - 1 \cdot 1.25) - 2 \cdot 2 \cdot (1 \cdot 1.25 - 1 \cdot 1.25) \cdot (1 - 1)$$

$$= 0 in^2$$

 $\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$

- = $(88 60 2 \cdot 2) \cdot 2 \cdot 1$
- = 48 in²

Area = $A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

$$= 0 + 10.3795 + 0 + 1 + 1 + 0 + 48$$

= 60.3795 in²

The area replacement requirements of Appendix 1-7(a) are satisfied.

2" 300# RFLWN LEVEL TRANS (J3A)

Located on	60" BOOT (BOOT)		
Orientation	180°		
Nozzle center line offset to face of parent nozzle	5"		
End of nozzle to shell center	44"		
Passes through a Category A joint	No		
Nozzle			
Access opening	No		
Material specification	SA-350 LF2 CI 1 (II-D p. 14, In. 11)		
Inside diameter, new	2"		
Nominal wall thickness	0.655"		
Corrosion allowance	0.25"		
Projection available outside vessel, Lpr	11.12"		
Projection available outside vessel to flange face, Lf	12"		
Local vessel minimum thickness	2"		
Liquid static head included	0 psi		
Welds			
Inner fillet, Leg ₄₁	0.375"		
Nozzle to vessel groove weld	2"		
Radiography			
Longitudinal seam	Seamless No RT		

ASME B16.5-2003 Flange				
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1			
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)			
Blind included	No			
Rated MDMT	-55°F			
Liquid static head	0 psi			
Consider External Loads on Flange MAWP Rating	No			
MAWP rating	570 psi @ 600°F			
MAP rating	740 psi @ 70°F			
Hydrotest rating	1,125 psi @ 70°F			
PWHT performed	Yes			
Impact Tested	No			
	Gasket			
Туре	ASME B16.20 Kammprofile			
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel			
Factor, m	2			
Seating Stress, y	2,500 psi			
Thickness, T	0.145"			
Inner Diameter 2.75"				
Outer Diameter 3.5"				
Notes				
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F				

UCS-66 Material Toughness Requirements	
LWN rated MDMT per UCS-66(c)(4) =	-55°F
Material is exempt from impact testing at the Design MDM	of -49°F.

Reinforcement Calculations for MAWP

The attached ASME B16.5 flange limits the nozzle MAWP.

UG-37 Area Calculation Summary (in ²)					UG-45 Sui	mmary (in)			
For P = 570 psi @ 600 °F The opening is adequately reinforced					The nozzle p	asses UG-45			
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}		
2.2806	6.0936	5.2582	0.702			0.1334	0.439	0.655	

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary									
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status						
Nozzle to shell fillet (Leg ₄₁) 0.25 0.2625 weld size is adequate									

WRC 107												
Load Case	P (psi)	P _r (lb _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	569.99	-710	-2,208	0	2,208	0	0	10,131	58,200	9,761	29,100	No
Load case 1 (Hot Shut Down)	0	-710	-2,208	0	2,208	0	0	545	58,200	46	29,100	No

Reinforcement Calculations for MAP

The attached ASME B16.5 flange limits the nozzle MAP.

UG-37 Area Calculation Summary (in ²)							UG-45 Su	mmary (in)			
For P = 740 psi @ 70 °F							The nozzle p	asses UG-45			
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}				
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							0.655			

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Sun	nmary (in)			
For Pe = 34.38 psi @ 400 °F							The nozzle pa	asses UG-45		
A required	A available	A ₁	A ₂	Α ₃	A ₅	A welds	t _{req} t _{min}			
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						0.3125	0.655			

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description Required weld throat size (in) Actual weld throat size (in) Status									
Nozzle to shell fillet (Leg ₄₁) 0.25 0.2625 weld size is adequate									

This opening does not require reinforcement per UG-36(c)(3)(a)

2" 300# RFLWN LEVEL TRANS (J3B)

Note: round inside edges per UG-76(c)

Location and Orientation	on			
Located on	60" BOOT (BOOT)			
Orientation	180°			
Nozzle center line offset to face of parent nozzle	71"			
End of nozzle to shell center	44"			
Passes through a Category A joint	No			
Nozzle				
Access opening	No			
Material specification	SA-350 LF2 CI 1 (II-D p. 14, In. 11)			
Inside diameter, new	2"			
Nominal wall thickness	0.655"			
Corrosion allowance	0.25"			
Projection available outside vessel, Lpr	11.12"			
Projection available outside vessel to flange face, Lf	12"			
Local vessel minimum thickness	2"			
Liquid static head included	0 psi			
Welds				
Inner fillet, Leg ₄₁	0.375"			
Nozzle to vessel groove weld	2"			
Radiography				
Longitudinal seam	Seamless No RT			

ASME B16.5-2003 Flange								
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1							
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)							
Blind included	No							
Rated MDMT	-55°F							
Liquid static head	0 psi							
Consider External Loads on Flange MAWP Rating	No							
MAWP rating	570 psi @ 600°F							
MAP rating	740 psi @ 70°F							
Hydrotest rating	1,125 psi @ 70°F							
PWHT performed	Yes							
Impact Tested	No							
Notes								
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F								

UCS-66 Material Toughness Requirements	
LWN rated MDMT per UCS-66(c)(4) =	-55°F
Material is exempt from impact testing at the Design MDM	of -49°F.

Reinforcement Calculations for MAWP

The attached ASME B16.5 flange limits the nozzle MAWP.

UG-3	7 Area C	UG-45 Sui	nmary (in)							
	For P The openin	The nozzle p	asses UG-45							
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req} t _{min}			
2.2806	6.0936	5.2582	0.702 0.1334 0.439 0.65							

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary									
Weld description Required weld throat size (in) Actual weld throat size (in) Status									
Nozzle to shell fillet (Leg ₄₁) 0.25 0.2625 weld size is adequate									

	WRC 107											
Load Case	P (psi)	P _r (lb _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	569.99	-710	-2,208	0	2,208	0	0	10,131	58,200	9,761	29,100	No
Load case 1 (Hot Shut Down)	0	-710	-2,208	0	2,208	0	0	545	58,200	46	29,100	No

Reinforcement Calculations for MAP

The attached ASME B16.5 flange limits the nozzle MAP.

UG-37 Area Calculation Summary (in ²)							UG-45 Sui	mmary (in)		
For P = 740 psi @ 70 °F							The nozzle p	asses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}			
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						0.189	0.655			

UG-41 Weld Failure Path Analysis Summary
The nozzle is exempt from weld strength calculations per UW-15(b)(2)

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAEP

UG	-37 Area Calcu	latio	n Sun	nmary	/ (in ²)		UG-45 Sun	nmary (in)
	For Pe = 34.	e = 34.38 psi @ 400 °F The nozzle passe				asses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	-36(c)(3)(a)	0.3125	0.655

UG-41	We	əld	Failure	Path	Anal	ysis	Sumn	nary	
									_

Weld strength calculations are not required for external pressure

UW-	16 Weld Sizi	ng Summary	1
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status
Nozzle to shell fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate

This opening does not require reinforcement per UG-36(c)(3)(a)

2" 300# RFLWN LEVEL TRANS (J4A)

Location and Orientation	on			
Located on	60" BOOT (BOOT)			
Orientation	90°			
Nozzle center line offset to face of parent nozzle	5"			
End of nozzle to shell center	44"			
Passes through a Category A joint	No			
Nozzle				
Access opening	No			
Material specification	SA-350 LF2 CI 1 (II-D p. 14, In. 11)			
Inside diameter, new	2"			
Nominal wall thickness	0.655"			
Corrosion allowance	0.25"			
Projection available outside vessel, Lpr	11.12"			
Projection available outside vessel to flange face, Lf	12"			
Local vessel minimum thickness	2"			
Liquid static head included	0 psi			
Welds				
Inner fillet, Leg ₄₁	0.375"			
Nozzle to vessel groove weld	2"			
Radiography				
Longitudinal seam	Seamless No RT			

ASME B16.5-2003 Flange						
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1					
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)					
Blind included	No					
Rated MDMT	-55°F					
Liquid static head	0 psi					
Consider External Loads on Flange MAWP Rating	No					
MAWP rating	570 psi @ 600°F					
MAP rating	740 psi @ 70°F					
Hydrotest rating	1,125 psi @ 70°F					
PWHT performed	Yes					
Impact Tested	No					
	Gasket					
Туре	ASME B16.20 Kammprofile					
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel					
Factor, m	2					
Seating Stress, y	2,500 psi					
Thickness, T	0.145"					
Inner Diameter	2.75"					
Outer Diameter	3.5"					
	Notes					
Flange is impact tested per material specification to -50°F. Stress ratio = $0.3456 \le 0.35$, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F.						

UCS-66 Material Toughness Requirements	
LWN rated MDMT per UCS-66(c)(4) =	-55°F
Material is exempt from impact testing at the Design MDMT	of -49°F.

Reinforcement Calculations for MAWP

The attached ASME B16.5 flange limits the nozzle MAWP.

UG-3	7 Area C	alculati	on Sur	nm	ary	' (in ²)	UG-45 Sui	mmary (in)
	For P The openin	= 570 psi g is adequ	0 psi @ 600 °F dequately reinforced The nozzle passes U				asses UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
2.2806	6.0936	5.2582	0.702			0.1334	0.439	0.655

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status					
Nozzle to shell fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate					

	WRC 107													
Load Case	P (psi)	P _r (lb _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed		
Load case 1	569.99	-710	-2,208	0	2,208	0	0	10,131	58,200	9,761	29,100	No		
Load case 1 (Hot Shut Down)	0	-710	-2,208	0	2,208	0	0	545	58,200	46	29,100	No		

Reinforcement Calculations for MAP

The attached ASME B16.5 flange limits the nozzle MAP.

UG	i-37 Area Calcu	latio	n Sun	nmary	/ (in ²)		UG-45 Su	mmary (in)
	For P = 74	For P = 740 psi @ 70 °F The nozzle pas				asses UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	-36(c)(3)(a)	0.189	0.655

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAEP

UG	-37 Area Calcu	latio	n Sun	nmary	/ (in ²)		UG-45 Sun	nmary (in)
	For Pe = 34.	For Pe = 34.38 psi @ 400 °F 7				The nozzle passes UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	-36(c)(3)(a)	0.3125	0.655

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status			
Nozzle to shell fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate			

This opening does not require reinforcement per UG-36(c)(3)(a)

2" 300# RFLWN LEVEL TRANS (J4B)

Note: round inside edges per UG-76(c)

Location and Orientation						
Located on	60" BOOT (BOOT)					
Orientation	90°					
Nozzle center line offset to face of parent nozzle	71"					
End of nozzle to shell center	44"					
Passes through a Category A joint	No					
Nozzle						
Access opening	No					
Material specification	SA-350 LF2 CI 1 (II-D p. 14, In. 11)					
Inside diameter, new	2"					
Nominal wall thickness	0.655"					
Corrosion allowance	0.25"					
Projection available outside vessel, Lpr	11.12"					
Projection available outside vessel to flange face, Lf	12"					
Local vessel minimum thickness	2"					
Liquid static head included	0 psi					
Welds						
Inner fillet, Leg ₄₁	0.375"					
Nozzle to vessel groove weld	2"					
Radiography						
Longitudinal seam	Seamless No RT					

ASME B16.5-2003 Flange				
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1			
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)			
Blind included	No			
Rated MDMT	-55°F			
Liquid static head	0 psi			
Consider External Loads on Flange MAWP Rating	No			
MAWP rating	570 psi @ 600°F			
MAP rating	740 psi @ 70°F			
Hydrotest rating	1,125 psi @ 70°F			
PWHT performed	Yes			
Impact Tested	No			
	Gasket			
Туре	ASME B16.20 Kammprofile			
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel			
Factor, m	2			
Seating Stress, y	2,500 psi			
Thickness, T	0.145"			
Inner Diameter	2.75"			
Outer Diameter	3.5"			
Notes				
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F				

UCS-66 Material Toughness Requirements				
LWN rated MDMT per UCS-66(c)(4) =	-55°F			
Material is exempt from impact testing at the Design MDMT of -49°F.				

Reinforcement Calculations for MAWP

The attached ASME B16.5 flange limits the nozzle MAWP.

UG-37 Area Calculation Summary (in ²)							UG-45 Sui	mmary (in)
For P = 570 psi @ 600 °F The opening is adequately reinforced						The nozzle p	asses UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
2.2806	6.0936	5.2582	0.702			0.1334	0.439	0.655

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary						
Weld description	Required weld throat size (in)	Status				
Nozzle to shell fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate			

WRC 107												
Load Case	P (psi)	P _r (lb _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	569.99	-710	-2,208	0	2,208	0	0	10,131	58,200	9,761	29,100	No
Load case 1 (Hot Shut Down)	0	-710	-2,208	0	2,208	0	0	545	58,200	46	29,100	No

Reinforcement Calculations for MAP

The attached ASME B16.5 flange limits the nozzle MAP.

UG-37 Area Calculation Summary (in ²)						UG-45 Su	mmary (in)	
For P = 740 psi @ 70 °F						The nozzle p	asses UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						0.189	0.655	

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

This opening does not require reinforcement per UG-36(c)(3)(a)

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)					UG-45 Sun	nmary (in)		
For Pe = 34.38 psi @ 400 °F					The nozzle pa	asses UG-45		
A required	A available	A ₁	A ₂	Α ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is exempt from area calculations per UG-36(c)(3)(a)						-36(c)(3)(a)	0.3125	0.655

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary						
Weld description	Required weld Actual weld throat size (in) Status					
Nozzle to shell fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate			

This opening does not require reinforcement per UG-36(c)(3)(a)

Straight Flange on Ellipsoidal Head #3

A	ASME Section VIII Division 1, 2004 Edition, A06 Addenda						
Com	ponent	Cylinder					
Mat	terial	SA	А-516 70 (II-D р. 14,	ln. 20)			
Attac	hed To		60" BOOT (BOO	Т)			
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP			
Yes (-49°F)	Yes	Yes	Yes	No			
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)			
Inte	ernal	250	600	_49			
Ext	ernal	15	400	-+3			
		Static Liqui	d Head				
Con	Condition		P _s (psi) H _s (in)				
Test ho	orizontal	10.5	1				
		Dimensio	ons				
Inner D	Diameter	60"					
Lei	ngth		2"				
Nominal	Thickness		2"				
Corrosion	Inner		0"				
Corrosion	Outer		0"				
		Weight and C	apacity				
		Wei	Capacity (US gal)				
N	ew	22	24.48				
Cor	roded	220.49 24.48					
		Radiogra	phy				
Longitud	linal seam	Seamless No RT					
Left Circumf	Full UW-11(a) Type 1			e 1			

Results Summary						
Governing condition	Internal pressure					
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"					
Design thickness due to internal pressure (t)	<u>0.3897"</u>					
Design thickness due to external pressure (t_e)	<u>0.2382"</u>					
Maximum allowable working pressure (MAWP)	<u>1,243.59 psi</u>					
Maximum allowable pressure (MAP)	<u>1,282.05 psi</u>					
Maximum allowable external pressure (MAEP)	<u>634.76 psi</u>					
Rated MDMT	-155 °F					

UCS-66 Material Toughness Requirements							
Material impact test temperature per UG-84 =	-49°F						
$t_r = rac{255.74 \cdot 30}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	0.3866"						
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.3866 \cdot 1}{2 - 0} = ext{}$	0.1933						
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F						
$MDMT = \min \left[-49, -155 ight] =$	-155°F						
Design MDMT of -49°F is acceptable.							

Design thickness, (at 600 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{250 \cdot 30}{19,400 \cdot 1.00 - 0.60 \cdot 250} + 0 = \underline{0.3897}"$$

Maximum allowable working pressure, (at 600 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{19,400 \cdot 1.00 \cdot 2}{30 + 0.60 \cdot 2} - 0 = \underline{1,243.59} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 2}{30 + 0.60 \cdot 2} = \underline{1,282.05} \text{ psi}$$

External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{87.75}{64} = 1.3711$$
$$\frac{D_o}{t} = \frac{64}{0.2382} = 268.6608$$

From table G: A = 0.000220

From table CS-2: B = 3,022.4368 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 3,022.44}{3 \cdot (64/0.2382)} = 15$$
 psi

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.2382 + 0 = 0.2382$ "

Maximum Allowable External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{87.75}{64} = 1.3711$$
$$\frac{D_o}{t} = \frac{64}{2} = 32.0000$$

From table G: A = 0.005477

From table CS-2: B = 15,234.1744 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 15,234.17}{3 \cdot (64/2)} = \underline{634.76} \text{ psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 2}{31}\right) \cdot \left(1 - \frac{31}{\infty}\right) = 3.2258\%$$

The extreme fiber elongation does not exceed 5%.

Ellipsoidal Head #3

A	ASME Section VIII Division 1, 2004 Edition, A06 Addenda									
Com	ponent	Ellipsoidal Head								
Mat	terial	SA-516 70 (II-D p. 14, In. 20)								
Attac	hed To		60" BOOT (BOO	Т)						
Impact Tested	Normalized	Fine Grain Practice PWHT		Maximize MDMT/ No MAWP						
Yes (-49°F)	Yes	Yes	Yes	No						
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)						
Inte	ernal	250	600	_19						
Ext	ernal	15	400	-45						
		Static Liq	uid Head							
Con	dition	P _s (psi)	H _s (in)	SG						
Test horizontal		11.05	306	1						
		Dimen	sions							
Inner D	Diameter	60"								
Head	I Ratio	2								
Minimum	Thickness	1.5"								
Corrosion	Inner	0"								
	Outer		0"							
Leng	jth L _{sf}	2"								
Nominal T	hickness t _{s f}	2"								
Weight and Capacity										
	Weight (Ib) ¹ C									
N	ew	2,0	146.88							
Cor	roded	2,0	086.32	146.88						
		Radiog	raphy							
Categor	y A joints		Seamless No R	Т						
Head to s	shell seam		Full UW-11(a) Typ	be 1						

¹ includes straight flange

Results Summary									
Governing condition	internal pressure								
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"								
Design thickness due to internal pressure (t)	<u>0.3871</u> "								
Design thickness due to external pressure (t_e)	<u>0.1596</u> "								
Maximum allowable working pressure (MAWP)	<u>965.17</u> psi								
Maximum allowable pressure (MAP)	<u>995.02</u> psi								
Maximum allowable external pressure (MAEP)	<u>400.36</u> psi								
Straight Flange governs MDMT	-155°F								

Design thickness for internal pressure, (Corroded at 600 °F) UG-32(d)(1)

$$t = \frac{P \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{250 \cdot 60}{2 \cdot 19,400 \cdot 1 - 0.2 \cdot 250} + 0 = \underline{0.3871}"$$

Maximum allowable working pressure, (Corroded at 600 °F) UG-32(d)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 19,400 \cdot 1 \cdot 1.5}{60 + 0.2 \cdot 1.5} - 0 = \underline{965.17} \text{ psi}$$

Maximum allowable pressure, (New at 70 °F) UG-32(d)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 20,000 \cdot 1 \cdot 1.5}{60 + 0.2 \cdot 1.5} - 0 = \frac{995.02}{995.02} \text{ psi}$$

Design thickness for external pressure, (Corroded at 400 °F) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0.8591 \cdot 63 = 54.1227$ in

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{54.1227 \ / \ 0.159544} = 0.000368$$

From Table CS-2: B = 5,088.5205 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{5,088.5205}{54.1227 \ / \ 0.1595} = 15 \text{ psi}$$

t = 0.1595"+Corrosion = 0.1595" + 0" = 0.1595"

Check the external pressure per UG-33(a)(1) UG-32(d)(1)

$$t = \frac{1.67 \cdot P_e \cdot D}{2 \cdot S \cdot E - 0.2 \cdot 1.67 \cdot P_e} + \text{Corrosion} = \frac{1.67 \cdot 15 \cdot 60}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 1.67 \cdot 15} + 0 = 0.0376$$

The head external pressure design thickness (t_e) is <u>0.1595</u>".

Maximum Allowable External Pressure, (Corroded at 400 °F) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0.8591 \cdot 63 = 54.1227$ in

$$A = rac{0.125}{R_o \ / \ t} = rac{0.125}{54.1227 \ / \ 1.5} = 0.003464$$

From Table CS-2: B = 14,445.66 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{14,445.66}{54.1227 \ / \ 1.5} = 400.3585 \ {
m psi}$$

Check the Maximum External Pressure, UG-33(a)(1) UG-32(d)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{(D + 0.2 \cdot t) \cdot 1.67} = \frac{2 \cdot 20,000 \cdot 1 \cdot 1.5}{(60 + 0.2 \cdot 1.5) \cdot 1.67} = 595.82 \text{ psi}$$

The maximum allowable external pressure (MAEP) is 400.36 psi.

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 2}{11.2}\right) \cdot \left(1 - \frac{11.2}{\infty}\right) = 13.3929\%$$

4" 300# RFWN WATER OUTLET (N7)

ASME Section VIII Division 1, 2004 Edition, A06 Addenda								
Note: round inside edges per UG-76(c)								
Location and Orier	ntation							
Located on	Ellipsoidal Head #3							
Orientation	0°							
End of nozzle to datum line	0"							
Calculated as hillside	No							
Distance to head center, R	0"							
Passes through a Category A joint	No							
Nozzle	1							
Description	NPS 4 Sch 160							
Access opening	No							
Material specification	SA-333 6 Wld & smls pipe (II-D p. 10, ln. 8							
Inside diameter, new	3.438"							
Pipe nominal wall thickness	0.531"							
Pipe minimum wall thickness ¹	0.4646"							
Corrosion allowance	0"							
Projection available outside vessel, Lpr	2.7679"							
Projection available outside vessel to flange face, Lf	6.1479"							
Local vessel minimum thickness	1.5"							
Liquid static head included	0 psi							
Welds								
Inner fillet, Leg ₄₁	0.375"							
Nozzle to vessel groove weld	1.5"							
Radiography	· /							
Longitudinal seam	Welded pipe							
Circumferential seam	Full UW-11(a) Type 1							

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2003 Flange						
Description	NPS 4 Class 300 WN A350 LF2 Cl.1					
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)					
Blind included	No					
Rated MDMT	-55°F					
Liquid static head	0 psi					
Consider External Loads on Flange MAWP Rating	No					
MAWP rating	570 psi @ 600°F					
MAP rating	740 psi @ 70°F					
Hydrotest rating	1,125 psi @ 70°F					
PWHT performed	Yes					
Impact Tested	No					
Circumferential joint radiography	Full UW-11(a) Type 1					
	Gasket					
Туре	ASME B16.20 Kammprofile					
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel					
Factor, m	2					
Seating Stress, y	2,500 psi					
Thickness, T	0.145"					
Inner Diameter	4.87"					
Outer Diameter	6.06"					
Notes						
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F						

UCS-66 Material Toughness Requirements Nozzle					
Impact test temperature per material specification =					
External nozzle loadings per UG-22 govern the coincident ratio used.					
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0671 \cdot 1}{0.4646 - 0} =$	0.1444				
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F				
$MDMT = \min ig[T_{impact} - T_{UCS-66(g)} , -155ig] = \min ig[-50-5, -155ig] =$					
Material is exempt from impact testing at the Design MDMT of -49°F.					

Reinforcement Calculations for MAWP

The attached ASME B16.5 flange limits the nozzle MAWP.

UG-3	87 Area C	UG-45 Sui	mmary (in)					
	For The openir	The nozzle p	asses UG-45					
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
2.8356	4.0231	2.7724	1.1268	-		0.1239	0.2074	0.4646

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status					
Nozzle to shell fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate					

WRC 107												
Load Case	P (psi)	P _r (Ib _f)	M ₁ (Ib _f -in)	V ₂ (Ib _f)	M ₂ (Ib _f -in)	V ₁ (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	569.99	-1,260	-9,648	0	9,648	0	0	15,828	58,200	13,623	29,100	No
Load case 1 (Hot Shut Down)	0	-1,260	-9,648	0	9,648	0	0	2,397	58,200	192	29,100	No

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-3	7 Area C	UG-45 Sui	mmary (in)					
	For P The openin	The nozzle p	asses UG-45					
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
3.3766	3.3766	2.1884	1.068			0.1202	0.2074	0.4646

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

Reinforcement Calculations for MAEP

UG-3	87 Area C	UG-45 Sur	nmary (in)					
For Pe = 318.38 psi @ 400 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
2.2062	2.2063	1.0615	1.0246			0.1202	0.2074	0.4646

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (in)	Actual weld throat size (in)	Status				
Nozzle to shell fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate				

Lifting Lug - 1

Geometry Inputs						
Attached To	Cylinder #2					
Material	SA-516-70N					
Orientation	Longitudinal					
Distance of Lift Point From Datum	394" 0°					
Angular Position	0					
Height H	17"					
Thickness t	3"					
Hole Diameter. d	3.875"					
Pin Diameter, Dp	3.75"					
Load Eccentricity, a ₁	0"					
Distance from Load to Shell or Pad, a ₂	10"					
Load Angle Normal to Vessel, β	-45°					
Load Angle from Vertical, φ	-45°					
Welds						
Size, t _w	1.5"					
Collar						
Thickness, t _c	1"					
Diameter, D _c	8.5"					
Weld Size, t _{wc}	1.5"					
Reinforcement Pad						
Width, B _p	18"					
Length, L _p	30"					
Thickness, t _p	1.5"					
Weld Size, t _{wp}	1.5"					

Intermediate Values							
Load Factor	1.8000						
Vessel Weight (new, incl. Load Factor), W	367,872.5 lb						
Lug Weight (new), W _{lug}	578.5 lb						
Distance from Center of Gravity to this lug, x_1	141.6085"						
Distance from Center of Gravity to second lug, x_2	152.3915"						
Allowable Stress, Tensile, σ_t	22,800 psi						
Allowable Stress, Shear, $\sigma_{\!\!\!S}$	15,200 psi						
Allowable Stress, Bearing, σ_p	34,200 psi						
Allowable Stress, Bending, σ_{b}	25,080 psi						
Allowable Stress, Weld Shear, $\tau_{\text{allowable}}$	15,200 psi						
Allowable Stress set to 1/3 Sy per ASME B30.20	No						

Summary Values							
Required Lift Pin Diameter, d _{reqd}	<u>3.3607"</u>						
Required Lug Thickness, t _{reqd}	<u>0.5914"</u>						
Required Lug Collar Thickness, t _{c reqd}	<u>0"</u>						
Lug Stress Ratio, σ _{ratio}	<u>0.52</u>						
Weld Shear Stress Ratio, τ _{ratio}	<u>0.91</u>						
Lug Design	Acceptable						
Local Stresses WRC 107	Unacceptable						

Lift Forces

 $F_r = {\rm force \ on \ vessel \ at \ lug}$

$$F_r = \left[\frac{W}{\cos(\phi_1)}\right] \cdot \left(1 - \frac{x_1}{x_1 + x_2}\right) = \frac{367,\!872.5}{\cos(-45)} \cdot \left(1 - \frac{141.6085}{141.6085 + 152.3915}\right) = \underline{269,\!666 \text{ lb}}_{\underline{f}}$$

where x_1' is the distance between this lug and the center of gravity

 $^{\prime}x_{2}^{\prime}$ is the distance between the second lift lug and the center of gravity

Lug Pin Diameter - Shear stress

$$d_{\text{reqd}} = \sqrt{\frac{2 \cdot F_v}{\pi \cdot \sigma_s}}$$

$$= \sqrt{\frac{2 \cdot 269,666}{\pi \cdot 15,200}} = 3.3607^{"}$$

$$\frac{d_{reqd}}{D_p} = \frac{3.3607}{3.75} = 0.90 \quad \text{Acceptable}$$

$$\sigma = \frac{F_v}{A}$$

$$= \frac{F_v}{2 \cdot (0.25 \cdot \pi \cdot D_p^2)}$$

$$= \frac{269,666}{2 \cdot (0.25 \cdot \pi \cdot 3.75^2)} = 12,208 \text{ psi}$$

 $\frac{\sigma}{\sigma_s}$ = $\frac{12,208}{15,200}$ = 0.8 Acceptable

Lug Thickness - Tensile stress

$$t_{\text{reqd}} = \frac{F_v}{L \cdot \sigma_t}$$

= $\frac{269,666}{20 \cdot 22,800} = 0.5914''$

$\frac{t_{\rm reqd}}{t} = \frac{0.5914}{3}$	=	0.20	Acceptable
---	---	------	------------

$$\sigma = \frac{F_v}{A}$$
$$= \frac{F_v}{L \cdot t}$$
$$= \frac{269,666}{20 \cdot 3} = 4,494 \text{ psi}$$

σ		4,494		0.0	
σ_t	=	22,800	=	0.2	Acceptable

Lug Thickness - Bearing stress

$t_{ m reqd}$	=	$\frac{F_v}{D_p\cdot\sigma_p}$			
	=	269,666 3.75·34,200	=	2.1027"	
T	=	$t+2\cdot t_c$			
	=	$3+2\cdot 1$	=	5	
$\frac{T_{\rm reqd}}{T}$	=	$\frac{2.1027}{5}$	=	0.42	Acceptable

Collar required thickness

$t_{ m c\ reqd}$	=	$\max(0,\!0.5\cdot(T_{ ext{reqd}}-t))$			
	=	$\max(0,0.5\cdot(2.1027-3)$)		
	=	<u>0"</u>			
$rac{t_{ m c~reqd}}{t_c}$	=	$\frac{0}{1}$	=	0.00	Acceptable

$$\sigma = \frac{F_v}{A_{\text{bearing}}}$$

$$= \frac{F_v}{D_p \cdot (t + 2 \cdot t_c)}$$

$$= \frac{269,666}{3.75 \cdot (3 + 2 \cdot 1)} = 14,382 \text{ psi}$$

$$\frac{\sigma}{\sigma_p} = \frac{14,382}{34,200} = 0.42 \text{ Acceptable}$$

Lug Thickness - Shear stress

$$t_{\text{reqd}} = \frac{\frac{F_v}{\sigma_s} - 4 \cdot t_c \cdot L_c}{2 \cdot L_{\text{shear}}}$$
$$= \frac{\frac{269,666}{15,200} - 4 \cdot (1 \cdot 3.4901)}{2 \cdot 5.815} = 0.3251"$$

$$\frac{t_{\rm reqd}}{t}$$
 = $\frac{0.3251}{3}$ = 0.11 Acceptable

Collar required thickness

$$\begin{aligned} t_{c \ reqd} &= \frac{\frac{F_v}{\sigma_s} - 2 \cdot t \cdot L_{shear}}{4 \cdot L_c} \\ &= \frac{\frac{269,666}{15,200} - 2 \cdot (3 \cdot 5.815)}{4 \cdot 3.4901} = 0 \\ \frac{t_c \ reqd}{t_c} &= \frac{0}{1} = 0.00 \quad \text{Acceptable} \end{aligned}$$

$$\begin{aligned} \tau &= \frac{F_v}{A_{\text{shear}}} \\ &= \frac{F_v}{2 \cdot t \cdot L_{\text{shear}} + 4 \cdot t_c \cdot L_c} \\ &= \frac{269,666}{2 \cdot 3 \cdot 5.815 + 4 \cdot 1 \cdot 3.4901} = 5,520 \text{ psi} \end{aligned}$$
$$\frac{\tau}{\sigma_s} &= \frac{5,520}{15,200} = 0.36 \text{ Acceptable} \end{aligned}$$

Shear stress length (per Pressure Vessel and Stacks, A. Keith Escoe)

$$\phi = 55 \cdot \frac{D_p}{d}$$

$$= 55 \cdot \frac{3.75}{3.875}$$

$$= 53.2258^{\circ}$$

$$L_{\text{shear}} = (H - a2 - 0.5 \cdot d) + 0.5 \cdot D_p \cdot (1 - \cos(\phi))$$

$$= (17 - 10 - 0.5 \cdot 3.875) + 0.5 \cdot 3.75 \cdot (1 - \cos(53.2258))$$

$$= 5.815^{"}$$

$$L_c = \text{Collar shear plane length}$$

$$= 3.4901^{"}$$

Lug Plate Stress

Lug stress tensile + bending during lift:

$$\begin{aligned} \sigma_{\text{ratio}} &= \left[\frac{F_{\text{ten}}}{A_{\text{ten}} \cdot \sigma_t}\right] + \left[\frac{M_{\text{bend}}}{Z_{\text{bend}} \cdot \sigma_b}\right] \leq 1 \\ &= \left[\frac{F_r \cdot \cos(\beta)}{t \cdot L \cdot \sigma_t}\right] + \left[\frac{6 \cdot |F_r \cdot \sin(\beta) \cdot \text{Hght} - F_r \cdot \cos(\beta) \cdot a_1|}{t \cdot L_2 \cdot \sigma_b}\right] \leq 1 \\ &= 269,666 \cdot \frac{\cos(-45.0)}{3 \cdot 20 \cdot 22,800} + 6 \cdot \frac{|269,666 \cdot \sin(-45.0) \cdot 10 - 269,666 \cdot \cos(-45.0) \cdot 0|}{3 \cdot 20^2 \cdot 25,080} \\ &= 0.52 \quad \text{Acceptable} \end{aligned}$$

Weld Stress

Weld stress, tensile, bending and shear during lift:

Direct shear:

Shear stress at lift angle -45.00°; lift force = $269,666 \text{ lb}_{f}$

$$A_{\text{weld}} = 2 \cdot (0.707) \cdot t_w \cdot (L+t)$$

= $2 \cdot (0.707) \cdot 1.5 \cdot (20+3) = 48.783 \text{ in}^2$

$$\begin{aligned} \tau_t &= F_{\text{lug}} \cdot \frac{\cos(\beta)}{A_{\text{weld}}} \\ &= 269,666 \cdot \frac{\cos(-45.0)}{48.783} = 3,909 \text{ psi} \\ \tau_s &= F_{\text{lug}} \cdot \frac{\sin(\beta)}{A_{\text{weld}}} \end{aligned}$$

$$= 269,666 \cdot \frac{\sin(-45.0)}{48.783} = -3,909 \text{ psi}$$

$$\begin{aligned} \tau_b &= M \cdot \frac{c}{I} \\ &= 3 \cdot \frac{F_{\text{lug}} \cdot \sin(\beta) \cdot Hght - F_{\text{lug}} \cdot \cos(\beta) \cdot a_1}{0.707 \cdot h \cdot L \cdot (3 \cdot t + L)} \\ &= 3 \cdot \frac{|269,666 \cdot \sin(-45.0) \cdot 10 - 269,666 \cdot \cos(-45.0) \cdot (0)|}{615.0900} \end{aligned}$$

$$\begin{aligned} \tau_{\text{ratio}} &= \frac{\sqrt{\left(\tau_t + \tau_b\right)^2 + \tau_s^2}}{\tau_{\text{allowable}}} \leq 1 \\ &= \frac{\sqrt{\left(3,909 + 9,300\right)^2 + \left(-3,909\right)^2}}{15,200} \\ &= 0.91 \end{aligned}$$
 Acceptable

Collar Weld Stress:

$$\tau_c = \frac{F_r}{A_{weld}}$$

$$= \frac{269,666}{2 \cdot 0.707 \cdot 1.5 \cdot \pi \cdot 8.5} = 4,761 \text{ psi}$$

$$\tau_{ratio} = \frac{\tau_c}{\tau_{\text{allowable}}} \leq 1$$

$$= \frac{4,761}{15,200} = 0.31 \text{ Acceptable}$$

Pad Weld Stress, tensile, bending and shear during lift:

Direct shear:

Shear stress at lift angle -45.00°; lift force = 269,666 $\rm lb_{f}$

$$\begin{aligned} A_{\text{weld}} &= 2 \cdot (0.707) \cdot t_{w} - p \cdot (L_p + B_p) \\ &= 2 \cdot (0.707) \cdot 1.5 \cdot (30 + 18) = 101.808 \text{ in}^2 \end{aligned}$$

$$\begin{split} \tau_t &= F_{\text{lug}} \cdot \frac{\cos(\beta)}{A_{\text{weld}}} \\ &= 269,666 \cdot \frac{\cos(-45.0)}{101.808} = 1,873 \text{ psi} \\ \tau_s &= F_{\text{lug}} \cdot \frac{\sin(\beta)}{A_{\text{weld}}} \\ &= 269,666 \cdot \frac{\sin(-45.0)}{101.808} = -1,873 \text{ psi} \\ \tau_b &= M \cdot \frac{c}{I} \\ &= 3 \cdot \frac{F_{\text{lug}} \cdot \sin(\beta) \cdot H g h t - F_{\text{lug}} \cdot \cos(\beta) \cdot a_1}{0.707 \cdot h_p \cdot L_p \cdot (3 \cdot W_p + L_p)} \\ &= 3 \cdot \frac{|269,666 \cdot \sin(-45.0) \cdot 11.5 - 269,666 \cdot \cos(-45.0) \cdot (0)|}{2672.4600} \end{split}$$

$$\tau_{\text{ratio}} = \frac{\sqrt{(\tau_t + \tau_b)^2 + \tau_s^2}}{\tau_{\text{allowable}}} \le 1$$
$$= \frac{\sqrt{(1,873 + 2,462)^2 + (-1,873)^2}}{15,200}$$

Acceptable

WRC 107 Analysis

0.31

=

Geometry							
Height (radial)	17"						
Width (circumferential)	3"						
Length	20"						
Fillet Weld Size:	1.5"						
Located On	Cylinder #2 (30" from left end)						
Location Angle	0.00°						
Reinfor	cement Pad						
Thickness	1.5"						
Width	18"						
Length	30"						
Weld Size	1.5"						

Applied Loads							
Radial Ioad, P _r	-190,682.53 lb _f						
Circumferential moment, M _c	0 lb _f -in						
Circumferential shear, V _c	0 lb _f						
Longitudinal moment, M _L	-2,192,849.1 lb _f -in						
Longitudinal shear, V _L	-190,682.53 lb _f						
Torsion moment, M _t	0 lb _f -in						
Internal pressure, P	0 psi						
Mean shell radius, R _m	84.625"						
Design factor	3						

Maximum stresses due to the applied loads at the lug edge

$$\gamma = \frac{R_m}{T} = \frac{84.625}{2.75} = 30.7727$$

 $C_1 = 3, C_2 = 11.5$ in

Local circumferential pressure stress $= \frac{P \cdot R_i}{T} = 0$ psi

Local longitudinal pressure stress $= \frac{P \cdot R_i}{2 \cdot T} = 0$ psi

Maximum combined stress $(P_L+P_b+Q)=44{,}458~{
m psi}$ Allowable combined stress $(P_L+P_b+Q)=\pm 3\cdot S=\pm 60{,}000~{
m psi}$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 6,885$ psi

Allowable local primary membrane stress $(P_L)=\pm 1.5\cdot S=\pm 30{,}000~{
m psi}$

The maximum local primary membrane stress (P_L) is within allowable limits.

Stresses at the lug edge per WRC Bulletin 107										
Figure	value	β	A _u	A	Bu	BI	Cu	Cl	D _u	D
3C*	4.8731	0.1022	0	0	0	0	3,993	3,993	3,993	3,993
4C*	5.6236	0.0831	4,608	4,608	4,608	4,608	0	0	0	0
1C	0.1859	0.0612	0	0	0	0	28,124	-28,124	28,124	-28,124
2C-1	0.1476	0.0612	22,330	-22,330	22,330	-22,330	0	0	0	0
3A*	0.4277	0.0555	0	0	0	0	0	0	0	0
1A	0.1042	0.0705	0	0	0	0	0	0	0	0
3B*	2.6675	0.0868	2,277	2,277	-2,277	-2,277	0	0	0	0
1B-1	0.0539	0.0769	14,403	-14,403	-14,403	14,403	0	0	0	0
Pr	essure stress	*	0	0	0	0	0	0	0	0
Total ci	rcumferential	stress	43,618	-29,848	10,258	-5,596	32,117	-24,131	32,117	-24,131
Primary membr	Primary membrane circumferential stress*			6,885	2,331	2,331	3,993	3,993	3,993	3,993
3C*	5.2058	0.0831	4,265	4,265	4,265	4,265	0	0	0	0
4C*	5.4456	0.1022	0	0	0	0	4,462	4,462	4,462	4,462
1C-1	0.159	0.0865	24,054	-24,054	24,054	-24,054	0	0	0	0
2C	0.1166	0.0865	0	0	0	0	17,640	-17,640	17,640	-17,640
4A*	0.5618	0.0555	0	0	0	0	0	0	0	0
2A	0.0566	0.0956	0	0	0	0	0	0	0	0
4B*	0.7251	0.0868	1,094	1,094	-1,094	-1,094	0	0	0	0
2B-1	0.0768	0.1049	15,045	-15,045	-15,045	15,045	0	0	0	0
Pr	essure stress	*	0	0	0	0	0	0	0	0
Total	ongitudinal st	ress	44,458	-33,740	12,180	-5,838	22,102	-13,178	22,102	-13,178
Primary mem	brane longitud	linal stress*	5,359	5,359	3,171	3,171	4,462	4,462	4,462	4,462
S	Shear from M _t			0	0	0	0	0	0	0
Circ shear from V _c			0	0	0	0	0	0	0	0
Lon	g shear from \	/ _L	0	0	0	0	1,507	1,507	-1,507	-1,507
Tot	al Shear stres	s	0	0	0	0	1,507	1,507	-1,507	-1,507
Combin	ed stress (P _L +	P _b +Q)	44,458	-33,740	12,180	-5,838	32,339	-24,335	32,339	-24,335
* denotes primary stress.										

Maximum stresses due to the applied loads at the pad edge

$$\gamma = \frac{R_m}{T} = \frac{84.625}{1.25} = 67.7$$

$$C_1 = 10.5, C_2 = 16.5$$
 in

Local circumferential pressure stress $= \frac{P \cdot R_i}{T} = 0$ psi

Local longitudinal pressure stress $= \frac{P \cdot R_i}{2 \cdot T} = 0$ psi

Maximum combined stress $(P_L + P_b + Q) = 77{,}591$ psi Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 60{,}000$ psi

WRC 107: The combined stress (P_L+P_b+Q) is excessive (at pad edge)

Maximum local primary membrane stress $(P_L)=24{,}809~{
m psi}$ Allowable local primary membrane stress $(P_L)=\pm 1.5\cdot S=\pm 30{,}000~{
m psi}$

The maximum local primary membrane stress (P_L) is within allowable limits.

Stresses at the pad edge per WRC Bulletin 107										
Figure	value	β	A _u	A	B _u	BI	Cu	Cl	D _u	DI
3C*	4.8657	0.1917	0	0	0	0	8,771	8,771	8,771	8,771
4C*	9.1776	0.1706	16,544	16,544	16,544	16,544	0	0	0	0
1C	0.0738	0.1465	0	0	0	0	54,038	-54,038	54,038	-54,038
2C-1	0.042	0.1465	30,753	-30,753	30,753	-30,753	0	0	0	0
3A*	2.713	0.1443	0	0	0	0	0	0	0	0
1A	0.0754	0.1552	0	0	0	0	0	0	0	0
3B*	6.6154	0.1677	8,265	8,265	-8,265	-8,265	0	0	0	0
1B-1	0.0257	0.1585	16,132	-16,132	-16,132	16,132	0	0	0	0
Pr	essure stress	*	0	0	0	0	0	0	0	0
Total ci	rcumferential	stress	71,694	-22,076	22,900	-6,342	62,809	-45,267	62,809	-45,267
Primary membr	Primary membrane circumferential stress*			24,809	8,279	8,279	8,771	8,771	8,771	8,771
3C*	5.6624	0.1706	10,207	10,207	10,207	10,207	0	0	0	0
4C*	8.5882	0.1917	0	0	0	0	15,481	15,481	15,481	15,481
1C-1	0.0623	0.1744	45,617	-45,617	45,617	-45,617	0	0	0	0
2C	0.0387	0.1744	0	0	0	0	28,337	-28,337	28,337	-28,337
4A*	5.0757	0.1443	0	0	0	0	0	0	0	0
2A	0.0339	0.1799	0	0	0	0	0	0	0	0
4B*	2.6745	0.1677	4,266	4,266	-4,266	-4,266	0	0	0	0
2B-1	0.0318	0.1808	17,501	-17,501	-17,501	17,501	0	0	0	0
Pr	essure stress	*	0	0	0	0	0	0	0	0
Total	ongitudinal st	ress	77,591	-48,645	34,057	-22,175	43,818	-12,856	43,818	-12,856
Primary mem	brane longitud	linal stress*	14,473	14,473	5,941	5,941	15,481	15,481	15,481	15,481
Shear from M _t			0	0	0	0	0	0	0	0
Circ shear from V _c			0	0	0	0	0	0	0	0
Lon	g shear from V	/L	0	0	0	0	2,311	2,311	-2,311	-2,311
Tot	al Shear stres	s	0	0	0	0	2,311	2,311	-2,311	-2,311
Combin	ed stress (P _L +	P _b +Q)	77,591	-48,645	34,057	-22,175	63,086	-45,431	63,086	-45,431
* denotes pri	mary stress									

Cylinder #3

	ASME Section VIII Division 1, 2004 Edition, A06 Addenda								
Com	ponent	Cylinder							
Ma	terial		SA-516 70 (II-D p. 14, In. 20)						
Impact Tested	Normalized	Fine Grain Practice	РѠҤТ	Maximize MDMT/ No MAWP					
Yes (-49°F)	Yes	Yes	Yes	No					
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)					
Inte	ernal	250	600	_49					
Ext	ernal	15	400	-+3					
Static Liquid Head									
Con	dition	P _s (psi)	H _s (in)	SG					
Test h	orizontal	7.47	207	1					
Dimensions									
Inner D	Diameter	168"							
Le	ngth	87"							
Nominal	Thickness	1.375"							
Corrosion	Inner		0"						
	Outer		0"						
		Weight and	Capacity						
		<u>v</u>	/eight (lb)	Capacity (US gal)					
N	ew	· · · · · ·	8,348.64						
Cor	roded	· · · ·	16,913.67	8,348.64					
		Insula	tion						
		Thickness (in)	Density (lb/ft ³)	Weight (lb)					
Insu	llation	4	18	1,990.11					
		Spacing(in)	Individual Weight (Ib)	Total Weight (lb)					
Insulation Supports		145	50						
		Radiog	raphy						
Longitud	dinal seam		Full UW-11(a) Type 1						
Left Circum	ferential seam		Full UW-11(a) Type 1						
Right Circum	ferential seam		Full UW-11(a) Type 1						

Results Summary	
Governing condition	Internal pressure
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"
Design thickness due to internal pressure (t)	<u>1.091"</u>
Design thickness due to external pressure (t_e)	<u>0.8941"</u>
Maximum allowable working pressure (MAWP)	<u>314.47 psi</u>
Maximum allowable pressure (MAP)	<u>324.2 psi</u>
Maximum allowable external pressure (MAEP)	<u>42.99 psi</u>
Rated MDMT	-70.3 °F

UCS-66 Material Toughness Requirements		
Material impact test temperature per UG-84 =	-49°F	
$t_r = rac{255.74\cdot 84}{20,000\cdot 1 - 0.6\cdot 255.74} =$	1.0824"	
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872	
Stress ratio longitudinal $=$ $\frac{8,057 \cdot 1}{20,000 \cdot 1} =$	0.4029	
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F	
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$	-70.3°F	
Design MDMT of -49°F is acceptable.		

Design thickness, (at 600 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{250 \cdot 84}{19,400 \cdot 1.00 - 0.60 \cdot 250} + 0 = \underline{1.091}"$$

Maximum allowable working pressure, (at 600 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{19,400 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} - 0 = \underline{314.47} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} = \frac{324.2}{824.2} \text{ psi}$

External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{0.8941} = 190.9811$$

From table G: A = 0.000157

From table CS-2: B = 2,148.5374 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,148.54}{3 \cdot (170.75/0.8941)} = 15 \text{ psi}$$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.8941 + 0 = 0.8941$ "

Maximum Allowable External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{1.375} = 124.1818$$
From table G: A = 0.000290

From table CS-2: B = 4,004.3077 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 4,004.31}{3 \cdot (170.75/1.375)} = rac{42.99}{42.99} \, \mathrm{psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.375}{84.6875}\right) \cdot \left(1 - \frac{84.6875}{\infty}\right) = 0.8118\%$$

The extreme fiber elongation does not exceed 5%.

Allowable Compressive Stress, Hot and Corroded- $\rm S_{\rm CHC},$ (table CS-2)

$$A = rac{0.125}{R_o/t} = rac{0.125}{85.375/1.375} = 0.002013$$

B = 10,328 psi

$$S = {19,400 \over 1.00} = 19,400$$
 psi

 $S_{c\!H\!C}~=~\min~(B,S)=$ 10,328 psi

Allowable Compressive Stress, Hot and New- $\rm S_{cHN}$

 $S_cHN=S_cHC=10{,}328\,$ psi

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

B = 15,019 psi

$$S = \frac{20,\!000}{1.00} = 20,\!000 \;\; \mathrm{psi}$$

 $S_{c\!C\!N}\ =\ \min\ (B,\!S) =$ 15,019 psi

Allowable Compressive Stress, Cold and Corroded- \mathbf{S}_{cCC}

$$S_{c\mathbb{C}} = S_{cCN} = 15{,}019$$
 psi

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

 $B = 13,139$ psi

$$S = \frac{20,000}{1.00} = 20,000$$
 psi

 $S_{c\!V\!C}\ =\ \min\ (B,\!S\,)=$ 13,139 psi

Nozzle #25 (N25)

Note: round inside edges per UG-76(c)

Location and Orientation							
Located on	Cylinder #3						
Orientation	90°						
Nozzle center line offset to datum line	250.5"						
End of nozzle to shell center	120"						
Passes through a Category A joint	No						
Nozzle							
Description	NPS 60 (Thk = 1.250")						
Access opening	No						
Material specification	SA-106 B Smls pipe (II-D p. 10, In. 5)						
Inside diameter, new	57.5"						
Pipe nominal wall thickness	1.25"						
Pipe minimum wall thickness ¹	1.0938"						
Corrosion allowance	0"						
Projection available outside vessel, Lpr	21.815"						
Internal projection, h _{new}	2"						
Projection available outside vessel to flange face, Lf	34.625"						
Local vessel minimum thickness	1.375"						
Liquid static head included	0 psi						
Reinforcing Pad							
Material specification	SA-516 70 (II-D p. 14, In. 20)						
Diameter, D _p	90"						
Thickness, t _e	1.375"						
Is split	No						
Welds							
Inner fillet, Leg ₄₁	0.375"						
Outer fillet, Leg ₄₂	0.5625"						
Lower fillet, Leg ₄₃	0.375"						
Nozzle to vessel groove weld	0.75"						
Pad groove weld	0.5625"						
Radiography							
Longitudinal seam	Seamless No RT						
Circumferential seam	Full UW-11(a) Type 1						

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.47-1996 Flange							
Description	NPS 60 Class 400 WN A105 Series A						
Bolt Material	SA-193 B7 Bolt (2 1/2 < t <= 4) (II-D p. 382, In. 32)						
Blind included	Yes						
Rated MDMT	-40°F						
Liquid static head	0 psi						
MAWP rating	730 psi @ 600°F						
MAP rating	990 psi @ 70°F						
Hydrotest rating	1,500 psi @ 70°F						
PWHT performed	Yes						
Impact Tested	No						
Circumferential joint radiography	Full UW-11(a) Type 1						
Bore diameter, B (specified by purchaser)	57.5"						
Bolt MDMT is only -40°F: -49°F is required							
Notes							
Flange and blind rated MDMT per UCS-66(b)(3	3) = -155°F (Coincident ratio = 0.2583)						

Flange and blind rated MDMT per UCS-66(b)(3) = -155°F (Coincident ratio = 0.2583) Bolts rated MDMT per Fig UCS-66 note (e) = -40°F

UCS-66 Material Toughness Requirements Nozzle						
Governing thickness, t _g =	1.0938"					
Exemption temperature from Fig UCS-66 Curve B =	35.5°F					
$t_r = \frac{255.74 \cdot 28.75}{17,100 \cdot 1 - 0.6 \cdot 255.74} =$	0.4339"					
${ m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.4339 \cdot 1}{1.0938 - 0} =$	0.3967					
Reduction in MDMT, T _R from Fig UCS-66.1 =	95.3°F					
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	30°F					
$MDMT = \max [MDMT - T_R - T_{PWHT}, -55] = \max [35.5 - 95.3 - 30, -55] =$	-55°F					
Material is exempt from impact testing at the Design MDMT of -49°F.						

UCS-66 Material Toughness Requirements Pad						
Governing thickness, t _g =	1.375"					
Exemption temperature from Fig UCS-66 Curve B =	47°F					
$t_r = rac{255.74\cdot 84}{20,000\cdot 1 - 0.6\cdot 255.74} =$	1.0824"					
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872					
$ m Stress ratio longitudinal = rac{8,057\cdot 1}{20,000\cdot 1} =$	0.4029					
Reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F					
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	30°F					
$MDMT = \max \left[MDMT - T_R - T_{PWHT} , -55 ight] = \max \left[47 - 21.3 - 30, -55 ight] =$	-4.3°F					
Rated MDMT of -4.3°F > Design MDMT of -49°F.						

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

L	IG-37 Are	UG-45 Sui	mmary (in)					
For P = 258.57 psi @ 600 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
65.2303	65.2312	14.0938	4.9162	4.407	41.25	0.5642	0.4387	1.0938

UG-41 Weld Failure Path Analysis Summary (lb _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
1,002,580.05	904,166.1	2,136,735.58	244,455.76	2,368,116.82	1,050,843.92	2,066,836.13	

UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.3938	weld size is adequate						
Nozzle to inside shell fillet (Leg $_{43}$)	0.25	0.2625	weld size is adequate						
Nozzle to pad groove (Upper)	0.525	0.5625	weld size is adequate						
Nozzle to shell groove (Lower)	0.525	0.75	weld size is adequate						

Check Large Opening per Appendix 1-7(a)

Area required within 75 percent of the limits of reinforcement = $2/3^{*}A = (2/3)^{*}65.2303 = 43.4869 \text{ in}^{2}$

$$L_{R} = \max [d, R_{n} + (t_{n} - C_{n}) + (t - C)]$$

- = max [57.5, 28.75 + (1.25 0) + (1.375 0)]
- = 43.125 in

$$A_{1} = (2 \cdot L_{R} - d) \cdot (E_{1} \cdot t - F \cdot t_{r}) - 2 \cdot t_{n} \cdot (E_{1} \cdot t - F \cdot t_{r}) \cdot (1 - f_{r_{1}})$$

- $= (2 \cdot 43.125 57.5) \cdot (1 \cdot 1.375 1 \cdot 1.1286) 2 \cdot 1.25 \cdot (1 \cdot 1.375 1 \cdot 1.1286) \cdot (1 0.8814)$
- = 7.0104 in²

 $\mathsf{A}_{42} = Leg^2 \cdot f_{r4}$

- $= 0^2 \cdot 1$
- = 0 in²

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$
$$= (86.25 - 57.5 - 2 \cdot 1.25) \cdot 1.375 \cdot 1$$

= 36.0938 in²

Area = $A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 7.0104 + 4.9162 + 4.407 + 0.1239 + 0 + 0.1239 + 36.0938
- = 52.6752 in²

The area replacement requirements of Appendix 1-7(a) are satisfied.

Check Large Opening per Appendix 1-7(b)

1-7(b)(1)(a) $D_i = 168$ in > 60 inTrue1-7(b)(1)(b) d = 57.5 in > 40 inTrue1-7(b)(1)(b) d = 57.5 in > $3.4 \cdot \sqrt{84 \cdot 1.375} = 36.5401$ inTrue1-7(b)(1)(c) $\frac{R_n}{R} = \frac{28.75}{84} = 0.3423 \le 0.7$ True1-7(b)(1)Radial nozzle in cylinder or coneTrue1-7(b)(1)Internal projection not presentFalse

The opening is within the size range defined by 1-7(b)(1)(a) and (b) so the requirements of 1-7(b)(2),(3) and (4) apply.

R_n / R = 0.3423 does not exceed 0.7 so a U-2(g) analysis is not required per 1-7(b)(1)(c).

** WARNING! The opening is outside the scope of Appendix 1-7(b) as an internal projection is specified. A U-2(g) analysis is required.

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

U	IG-37 Are	UG-45 Sui	mmary (in)					
For P = 265.65 psi @ 70 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
65.0774	65.0817	14.3021	4.6978	4.275	41.25	0.5568	0.4508	1.0938

UG-41 Weld Failure Path Analysis Summary (lb _f)							
All failure paths are stronger than the applicable weld loads							
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength	
1,026,206.26	927,688	2,160,114.92	243,045.25	2,423,039.72	1,074,373.25	2,121,599.98	

Check Large Opening per Appendix 1-7(a)

Area required within 75 percent of the limits of reinforcement = $2/3^{*}A = (2/3)^{*}65.0774 = 43.3849 \text{ in}^{2}$

- L_{R} = max $[d, R_{n} + (t_{n} C_{n}) + (t C)]$
 - = max [57.5, 28.75 + (1.25 0) + (1.375 0)]
 - = 43.125 in

 $\mathsf{A}_1 = (2 \cdot L_R - d) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$

- $= (2 \cdot 43.125 57.5) \cdot (1 \cdot 1.375 1 \cdot 1.1247) 2 \cdot 1.25 \cdot (1 \cdot 1.375 1 \cdot 1.1247) \cdot (1 0.855)$
- = 7.1057 in²

$$A_{42} = Leg^2 \cdot f_{r_4}$$
$$= 0^2 \cdot 1$$
$$= 0 \text{ in}^2$$

(Part of the weld is outside of the limits)

$$A_5 = (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

= (86.25 - 57.5 - 2 \cdot 1.25) \cdot 1.375 \cdot 1
= 36.0938 in²

Area = A_1 -

 $A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5 \\$

- $= \qquad 7.1057 + 4.6978 + 4.275 + 0.1202 + 0 + 0.1202 + 36.0938$
- = 52.4127 in²

The area replacement requirements of Appendix 1-7(a) are satisfied.

Check Large Opening per Appendix 1-7(b)

1-7(b)(1)(a)	$D_i = 168 \;\; { m in} > 60 \;\; { m in}$	True
1-7(b)(1)(b)	$d = 57.5 \;\; { m in} > 40 \;\; { m in}$	True
1-7(b)(1)(b)	$d = 57.5$ in $> 3.4 \cdot \sqrt{84 \cdot 1.375} = 36.5401$ in	True
1-7(b)(1)(c)	$rac{R_n}{R} = rac{28.75}{84} = 0.3423 \le 0.7$	True
1-7(b)(1)	Radial nozzle in cylinder or cone	True
1-7(b)(1)	Internal projection not present	False

The opening is within the size range defined by 1-7(b)(1)(a) and (b) so the requirements of 1-7(b)(2),(3) and (4) apply.

R_n / R = 0.3423 does not exceed 0.7 so a U-2(g) analysis is not required per 1-7(b)(1)(c).

** WARNING! The opening is outside the scope of Appendix 1-7(b) as an internal projection is specified. A U-2(g) analysis is required.

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)						UG-45 Su	mmary (in)		
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced						The nozzle p	basses UG-45		
A required	A available	A 1	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}		
39.7805	51.9535	-	5.8717	4.275	41.25	0.5568	0.2511	1.0938	

UG-41 Weld Failure Path Analysis Summary Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.3938	weld size is adequate						
Nozzle to inside shell fillet (Leg_{43})	0.25	0.2625	weld size is adequate						
Nozzle to pad groove (Upper)	0.525	0.5625	weld size is adequate						
Nozzle to shell groove (Lower)	0.525	0.75	weld size is adequate						

Check Large Opening per Appendix 1-7(a)

Area required within 75 percent of the limits of reinforcement = 2 / $3^*A = (2 / 3)^*39.7805 = 26.5203 \text{ in}^2$

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max \left[57.5, \ 28.75 + (1.25 0) + (1.375 0) \right]$
- = 43.125 in

$$A_{1} = (2 \cdot L_{R} - d) \cdot (E_{1} \cdot t - F \cdot t_{r}) - 2 \cdot t_{n} \cdot (E_{1} \cdot t - F \cdot t_{r}) \cdot (1 - f_{r_{1}})$$

- $= (2 \cdot 43.125 57.5) \cdot (1 \cdot 1.375 1 \cdot 1.375) 2 \cdot 1.25 \cdot (1 \cdot 1.375 1 \cdot 1.375) \cdot (1 0.855)$
- $= 0 in^2$

 $A_{42} = Leg^2 \cdot f_{r4}$

- $= 0^2 \cdot 1$
- = 0 in²

(Part of the weld is outside of the limits)

$$\mathsf{A}_5 \quad = \quad (D_p - d - 2 \cdot t_n) \cdot t_e \cdot f_{r4}$$

- $= (86.25 57.5 2 \cdot 1.25) \cdot 1.375 \cdot 1$
- = 36.0938 in²

Area = $A_1 + A_2 + A_3 + A_{41} + A_{42} + A_{43} + A_5$

- = 0 + 5.8717 + 4.275 + 0.1202 + 0 + 0.1202 + 36.0938
- = 46.4809 in²

The area replacement requirements of Appendix 1-7(a) are satisfied.

Cylinder #4

	ASME Section VIII Division 1, 2004 Edition, A06 Addenda						
Com	ponent	Cylinder					
Ma	terial	SA-516 70 (II-D p. 14, In. 20)					
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP			
Yes (-49°F)	Yes	Yes	Yes	No			
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)			
Inte	ernal	250	600	_49			
Ext	ernal	15	400				
		Static Liqu	uid Head				
Con	dition	P _s (psi)	H _s (in)	SG			
Test horizontal		7.47	207	1			
	Dimensions						
Inner [Diameter	168"					
Le	ngth	87"					
Nominal	Thickness	1.375"					
Corrosion	Inner	0"					
	Outer		0"				
		Weight and	Capacity				
		v	/eight (lb)	Capacity (US gal)			
N	ew	· · · · · ·	8,348.64				
Cor	roded	· · · · ·	18,013.89	8,348.64			
-		Insula	tion				
		Thickness (in)	Density (lb/ft ³)	Weight (lb)			
Insu	llation	4	18	1,990.11			
		Spacing(in)	Individual Weight (lb)	Total Weight (lb)			
Insulation Supports		145 50		50			
		Radiog	raphy				
Longitud	dinal seam	Full UW-11(a) Type 1					
Left Circum	Circumferential seam Full UW-11(a) Type 1						
Right Circum	ferential seam	Full UW-11(a) Type 1					

Results Summary					
Governing condition	Internal pressure				
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"				
Design thickness due to internal pressure (t)	<u>1.091"</u>				
Design thickness due to external pressure (t_e)	<u>0.8941"</u>				
Maximum allowable working pressure (MAWP)	<u>314.47 psi</u>				
Maximum allowable pressure (MAP)	<u>324.2 psi</u>				
Maximum allowable external pressure (MAEP)	<u>42.99 psi</u>				
Rated MDMT	-70.3 °F				

UCS-66 Material Toughness Requirements					
Material impact test temperature per UG-84 =	-49°F				
$t_r = rac{255.74\cdot 84}{20,000\cdot 1 - 0.6\cdot 255.74} =$	1.0824"				
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872				
Stress ratio longitudinal $=$ $\frac{8,057 \cdot 1}{20,000 \cdot 1} =$	0.4029				
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F				
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$	-70.3°F				
Design MDMT of -49°F is acceptable.					

Design thickness, (at 600 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{250 \cdot 84}{19,400 \cdot 1.00 - 0.60 \cdot 250} + 0 = \underline{1.091}"$$

Maximum allowable working pressure, (at 600 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{19,400 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} - 0 = \underline{314.47} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} = \frac{324.2}{824.2} \text{ psi}$

External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{0.8941} = 190.9811$$

From table G: A = 0.000157

From table CS-2: B = 2,148.5374 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,148.54}{3 \cdot (170.75/0.8941)} = 15 \text{ psi}$$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.8941 + 0 = 0.8941$ "

Maximum Allowable External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{1.375} = 124.1818$$

From table G: A = 0.000290

From table CS-2: B = 4,004.3077 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 4,004.31}{3 \cdot (170.75/1.375)} = rac{42.99}{42.99} \, \mathrm{psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.375}{84.6875}\right) \cdot \left(1 - \frac{84.6875}{\infty}\right) = 0.8118\%$$

The extreme fiber elongation does not exceed 5%.

Allowable Compressive Stress, Hot and Corroded- $\rm S_{\rm CHC},$ (table CS-2)

$$A = rac{0.125}{R_o/t} = rac{0.125}{85.375/1.375} = 0.002013$$

B = 10,328 psi

$$S = {19,400 \over 1.00} = 19,400$$
 psi

 $S_{c\!H\!C}~=~\min~(B,S)=$ 10,328 psi

Allowable Compressive Stress, Hot and New- $\rm S_{cHN}$

 $S_cHN=S_cHC=10{,}328\,$ psi

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

B = 15,019 psi

$$S = \frac{20,000}{1.00} = 20,000 \text{ psi}$$

 $S_{c\!C\!N}\ =\ \min\ (B,\!S) =$ 15,019 psi

Allowable Compressive Stress, Cold and Corroded- $\mathsf{S}_{\mathsf{cCC}}$

$$S_{c\mathbb{C}} = S_{cCN} = 15{,}019$$
 psi

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

 $B = 13,139$ psi

$$S = \frac{20,000}{1.00} = 20,000$$
 psi

 $S_{c\!V\!C}\ =\ \min\ (B,\!S\,)=$ 13,139 psi

Cylinder #5

	ASME Section VIII Division 1, 2004 Edition, A06 Addenda						
Com	ponent	Cylinder					
Ma	terial	SA-516 70 (II-D p. 14, In. 20)					
Impact Tested	Normalized	Fine Grain Practice	РѠҤТ	Maximize MDMT/ No MAWP			
Yes (-49°F)	Yes	Yes	Yes	No			
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)			
Inte	ernal	250	600	_49			
Ext	ernal	15	400	-+3			
		Static Liqu	uid Head				
Con	dition	P _s (psi)	H _s (in)	SG			
Test h	orizontal	7.47	207	1			
	Dimensions						
Inner D	Diameter		168"	168"			
Le	ngth	120"					
Nominal	Thickness	1.375"					
Corrosion	Inner		0"				
	Outer		0"				
		Weight and	Capacity				
		<u>v</u>	/eight (lb)	Capacity (US gal)			
N	ew		11,515.37				
Cor	roded		24,658.33	11,515.37			
		Insula	tion				
		Thickness (in)	Density (lb/ft ³)	Weight (lb)			
Insu	llation	4	18	2,744.98			
		Spacing(in)	Individual Weight (Ib)	Total Weight (lb)			
Insulation Supports		145	50				
		Radiog	raphy				
Longitud	dinal seam	Full UW-11(a) Type 1					
Left Circum	ferential seam	Full UW-11(a) Type 1					
Right Circum	ferential seam	Full UW-11(a) Type 1					

Results Summary						
Governing condition	Internal pressure					
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"					
Design thickness due to internal pressure (t)	<u>1.091"</u>					
Design thickness due to external pressure (t_e)	<u>0.8941"</u>					
Maximum allowable working pressure (MAWP)	<u>314.47 psi</u>					
Maximum allowable pressure (MAP)	<u>324.2 psi</u>					
Maximum allowable external pressure (MAEP)	<u>42.99 psi</u>					
Rated MDMT	-70.3 °F					

UCS-66 Material Toughness Requirements					
Material impact test temperature per UG-84 =	-49°F				
$t_r = rac{255.74\cdot 84}{20,000\cdot 1 - 0.6\cdot 255.74} =$	1.0824"				
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872				
Stress ratio longitudinal $=$ $\frac{8,057 \cdot 1}{20,000 \cdot 1} =$	0.4029				
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F				
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$	-70.3°F				
Design MDMT of -49°F is acceptable.					

Design thickness, (at 600 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{250 \cdot 84}{19,400 \cdot 1.00 - 0.60 \cdot 250} + 0 = \underline{1.091}"$$

Maximum allowable working pressure, (at 600 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{19,400 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} - 0 = \underline{314.47} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} = \frac{324.2}{824.2} \text{ psi}$

External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{0.8941} = 190.9811$$

From table G: A = 0.000157

From table CS-2: B = 2,148.5374 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,148.54}{3 \cdot (170.75/0.8941)} = 15 \text{ psi}$$

Design thickness for external pressure $P_a = 15$ psi

 $t_a = t + \text{Corrosion} = 0.8941 + 0 = 0.8941$ "

Maximum Allowable External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{1.375} = 124.1818$$

From table G: A = 0.000290

From table CS-2: B = 4,004.3077 psi

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 4,004.31}{3 \cdot (170.75/1.375)} = rac{42.99}{42.99} \, \mathrm{psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.375}{84.6875}\right) \cdot \left(1 - \frac{84.6875}{\infty}\right) = 0.8118\%$$

The extreme fiber elongation does not exceed 5%.

Allowable Compressive Stress, Hot and Corroded- $\rm S_{\rm CHC},$ (table CS-2)

$$A = rac{0.125}{R_o/t} = rac{0.125}{85.375/1.375} = 0.002013$$

B = 10,328 psi

$$S = {19,400 \over 1.00} = 19,400$$
 psi

 $S_{c\!H\!C}~=~\min~(B,S)=$ 10,328 psi

Allowable Compressive Stress, Hot and New- ${\rm S}_{\rm CHN}$

 $S_cHN=S_cHC=10{,}328\,$ psi

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

B = 15,019 psi

$$S = \frac{20,000}{1.00} = 20,000 \text{ psi}$$

 $S_{c\!C\!N}\ =\ \min\ (B,\!S) =$ 15,019 psi

Allowable Compressive Stress, Cold and Corroded- $\mathsf{S}_{\mathsf{cCC}}$

$$S_{c\mathbb{C}} = S_{cCN} = 15{,}019$$
 psi

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

 $B = 13,139$ psi

$$S = \frac{20,000}{1.00} = 20,000$$
 psi

 $S_{c\!V\!C}\ =\ \min\ (B,\!S\,) =$ 13,139 psi

Saddle #1

ASME Section VIII Division 1, 20	04 Edition, A	06 Addenda		
Saddle Material	SA5′	16-70N		
Saddle Construction	Cente	red web		
Welded to Vessel	Yes			
Saddle Allowable Stress, S _s	20,000 psi			
Saddle Yield Stress, S _y	38,0	00 psi		
Foundation Allowable Stress	75	0 psi		
Design Pressure	Left Saddle Right Sadd			
Operating & New	255.	74 psi		
Operating & Corr	255.	74 psi		
Test	339.	93 psi		
Vacuum	15	i psi		
Dimension	าร			
Right saddle distance to datum	5	54"		
Tangent To Tangent Length, L	5	04"		
Saddle separation, L _s	3	92"		
Vessel Radius, R	85.	.375"		
Tangent Distance Left, A _l	5	56"		
Tangent Distance Right, A _r	56"			
Saddle Height, H _s	1	17"		
Saddle Contact Angle, θ	120°			
Web Plate Thickness, t _s	0.625"			
Base Plate Length, E	150"			
Base Plate Width, F	16"			
Base Plate Thickness, t _b	1.5"			
Number of Stiffening Ribs, n	7			
Largest Stiffening Rib Spacing, di	i 24.75"			
Stiffening Rib Thickness, t _w	0	.5"		
Saddle Width, b	12"			
Reinforcing	Plate			
i nickness, t _p	0.3	375"		
Width, W _p	2	28"		
Contact Angle, θ _w	1	32°		
Bolting				
Material	AST	M 325		
Bolt Allowable Shear	20,0	UU psi		
	1.5" series	s & Inreaded		
Corrosion on root	0.2	120		
Page coefficient of friction	4			
Hole Diamotor	0.2			
Slotted Hole in Which Saddla	1./5" Diabt Sodalla			
Slotted Hole Length	ר.iyill אח	749"		
Weight	3.0	טד וי		
	Left Saddle	Right Saddle		
Operating, Corroded	103,801 lb	101,544 lb		

Operating, New	103,820 lb	101,551 lb	
Hydrotest	336,813 lb	329,333 lb	
Weight of Saddle Pair	6,702 lb		

Notes

(1) Saddle calculations are based on the method presented in "Stresses in Large Cylindrical Pressure Vessels on Two Saddle Supports" by L.P. Zick.

Stress Summary										
	Condition	0	Bending ·	Bending + pressure between saddles (psi)			Bending + pressure at the saddle (psi)			
Load		Saddle	S ₁ (+)	allow (+)	S ₁ (-)	allow (-)	S ₂ (+)	allow (+)	S ₂ (-)	allow (-)
	Operating & New	Right Saddle	9.057		246	12,394	<u>8,014</u>	23,280	<u>203</u>	12,394
		Left Saddle	<u>8,037</u>	23,200	240		<u>8,014</u>	23,280	<u>203</u>	12,394
		Right Saddle	0.057	22.000	246	12 204	<u>8,014</u>	23,280	<u>203</u>	12,394
Wind	Left Saddle	<u>8,037</u>	23,200	240	12,394	<u>8,014</u>	23,280	<u>203</u>	12,394	
	Right Saddle	11.000	24.200	695	19 022	<u>11,041</u>	34,200	<u>657</u>	18,022	
	Test	Left Saddle	11,009	34,200	000	10,022	<u>11,041</u>	34,200	<u>657</u>	18,022
	Vacuum	Right Saddle	<u>246</u>	24,000	<u>704</u> 1	15 766	<u>203</u>	24,000	<u>661</u>	15,766
	Vacuum	Left Saddle				15,700	<u>203</u>	24,000	<u>661</u>	15,766
	Operating & New	Right Saddle	8 010	19,400	207	10 229	<u>8,014</u>	19,400	<u>203</u>	10,328
	Operating & New	Left Saddle	<u>0,019</u>		207	10,328	<u>8,014</u>	19,400	<u>203</u>	10,328
Waight	Operating & Corr	Right Saddle	8.010	10,400	207		<u>8,014</u>	19,400	<u>203</u>	10,328
Vacuum		Left Saddle	0,019	19,400	207	10,320	<u>8,014</u>	19,400	<u>203</u>	10,328
	Vacuum	Right Saddle	207	20,000	665	12 120	<u>203</u>	20,000	<u>661</u>	13,139
	Left Saddle	207	20,000	000	13,139	203	20,000	<u>661</u>	13,139	

Stress Summary										
			Tangential shear (psi)		Circumferential stress (psi)		Stress over saddle (psi)		Splitting (psi)	
Load	Condition	Saddle	S ₃	allow	S ₄ (horns)	allow (+/-)	S ₅	allow	S ₆	allow
	Operating & New	Right Saddle	<u>902</u>	15,520	<u>-4,057</u>	29,100	<u>2,664</u>	14,550	<u>869</u>	13,333
		Left Saddle	<u>925</u>	15,520	<u>-4,133</u>	29,100	<u>2,714</u>	14,550	<u>885</u>	13,333
	Operating & Corr	Right Saddle	<u>902</u>	15,520	<u>-4,057</u>	29,100	<u>2,664</u>	14,550	<u>869</u>	13,333
Wind	Operating & Con	Left Saddle	<u>925</u>	15,520	<u>-4,132</u>	29,100	<u>2,714</u>	14,550	<u>885</u>	13,333
	Test	Right Saddle	<u>2,363</u>	27,360	<u>-11,276</u>	34,200	<u>7,405</u>	34,200	<u>2,415</u>	34,200
		Left Saddle	<u>2,438</u>	27,360	<u>-11,528</u>	34,200	<u>7,570</u>	34,200	<u>2,469</u>	34,200
) (a a	Right Saddle	<u>902</u>	16,000	<u>-4,057</u>	30,000	<u>2,664</u>	16,250	<u>869</u>	13,333
	vacuum	Left Saddle	<u>925</u>	16,000	<u>-4,132</u>	30,000	<u>2,714</u>	16,250	<u>885</u>	13,333
	Operating & New	Right Saddle	<u>709</u>	15,520	<u>-3,411</u>	29,100	<u>2,240</u>	14,550	<u>731</u>	13,333
	Operating & New	Left Saddle	<u>732</u>	15,520	<u>-3,488</u>	29,100	<u>2,290</u>	14,550	<u>747</u>	13,333
Weight	Operating & Carr	Right Saddle	<u>709</u>	15,520	<u>-3,411</u>	29,100	<u>2,240</u>	14,550	<u>731</u>	13,333
	Operating & Coll	Left Saddle	<u>732</u>	15,520	<u>-3,487</u>	29,100	<u>2,290</u>	14,550	<u>747</u>	13,333
	Vacuum	Right Saddle	<u>709</u>	16,000	<u>-3,411</u>	30,000	<u>2,240</u>	16,250	<u>731</u>	13,333
Vacuum	vacuum	Left Saddle	<u>732</u>	16,000	<u>-3,487</u>	30,000	<u>2,290</u>	16,250	747	13,333

Saddle reactions due to weight + wind					
Wind longitudinal reaction, Q _I					
Wind transverse reaction, Q _t					
Wind pressure, P _w	4.4 psf				
Equations					

$V_{wt} = P_w \cdot G \cdot ig(C_{f(ext{shell})} \cdot (ext{Projected shell area}) + C_{f(ext{saddle})} \cdot (ext{Projected saddle area}) ig)$						
$V_{we} = P_w \cdot G \cdot \left(rac{{C}_{f(ext{shell})} \cdot \pi \cdot R_o^2}{144} + {C}_{f(ext{saddle})} \cdot (ext{Projected saddle area}) ight)$						
$egin{aligned} Q_t = rac{V_{wt} \cdot H_s}{R_o \cdot ext{Sin}(heta \ / \)} \end{aligned}$	(2)					
$Q_l = rac{V_{we} \cdot H_s}{L_s}$						
$Q=W+{ m max}\;[Q]$	$_{t},Q_{l}]$					
		Results				
		$V_{wt} = 4.4 \cdot 0.85 \cdot (8.8 \cdot 368.2644 + 2 \cdot 2.6354)$	12,140.03 lb _f			
		$V_{we} = 4.4 \cdot 0.85 \cdot \left(rac{0.5 \cdot \pi \cdot 91.375 \ ^2}{144} + 2 \cdot 47.3344 ight)$	694.69 lb _f			
	Right Saddle	$Q_t = rac{12,\!140.03\cdot 117}{85.375\cdot { m Sin}(120\ /\ 2)}$	19,210.75 lb _f			
Operating & New		$Q_l = rac{694.69 \cdot 117}{392}$	207.34 lb _f			
		$Q = 101,551 + \max{[19,210.75,207.34]}$	120,761.75 lb _f			
	Left Saddle	$V_{wt} = 4.4 \cdot 0.85 \cdot (8.8 \cdot 368.2644 + 2 \cdot 2.6354)$	12,140.03 lb _f			
		$V_{we} = 4.4 \cdot 0.85 \cdot \left(rac{0.5 \cdot \pi \cdot 91.375^{-2}}{144} + 2 \cdot 47.3344 ight)$	694.69 lb _f			
		$Q_t = rac{12,\!140.03\cdot 117}{85.375\cdot { m Sin}(120\ /\ 2)}$	19,210.75 lb _f			
		$Q_l = rac{694.69\cdot 117}{392}$	207.34 lb _f			
		$Q = 103,\!820 + \max{[19,\!210.75,\!207.34]}$	123,030.75 lb _f			
		$V_{wt} = 4.4 \cdot 0.85 \cdot (8.8 \cdot 368.2644 + 2 \cdot 2.6354)$	12,140.03 lb _f			
		$V_{we} = 4.4 \cdot 0.85 \cdot \left(rac{0.5 \cdot \pi \cdot 91.375^{-2}}{144} + 2 \cdot 47.3344 ight)$	694.69 lb _f			
	Right Saddle	$Q_t = rac{12,\!140.03\cdot 117}{85.375\cdot { m Sin}(120\ /\ 2)}$	19,210.75 lb _f			
		$Q_l = rac{694.69 \cdot 117}{392}$	207.34 lb _f			
		$Q = 101,\!544 + \max{[19,\!210.75,\!207.34]}$	120,754.75 lb _f			
Operating & Corr		$V_{wt} = 4.4 \cdot 0.85 \cdot (8.8 \cdot 368.2644 + 2 \cdot 2.6354)$	12,140.03 lb _f			
	Left Saddle	$V_{we} = 4.4 \cdot 0.85 \cdot \left(rac{0.5 \cdot \pi \cdot 91.375^{-2}}{144} + 2 \cdot 47.3344 ight)$	694.69 lb _f			
		$Q_t = {rac{12,140.03 \cdot 117}{85.375 \cdot { m Sin}(120 \ / \ 2)}}$	19,210.75 lb _f			
		$Q_l = rac{694.69 \cdot 117}{392}$	207.34 lb _f			

		$Q = 103,\!801 + \max{[19,\!210.75,\!207.34]}$	123,011.75 lb _f
Test	Right Saddle	$V_{wt} = 1.45 \cdot 0.85 \cdot (8.8 \cdot 368.2644 + 2 \cdot 2.6354)$	4,006.21 lb _f
		$V_{we} = 1.45 \cdot 0.85 \cdot \left(rac{0.5 \cdot \pi \cdot 91.375^{-2}}{144} + 2 \cdot 47.3344 ight)$	229.25 lb _f
		$Q_t = rac{4,006.21\cdot 117}{85.375\cdot { m Sin}(120\ /\ 2)}$	6,339.55 lb _f
		$Q_l = rac{229.25 \cdot 117}{392}$	68.42 lb _f
		$Q = 329,333 + \max[6,339.55,68.42]$	335,672.55 lb _f
	Left Saddle	$V_{wt} = 1.45 \cdot 0.85 \cdot (8.8 \cdot 368.2644 + 2 \cdot 2.6354)$	4,006.21 lb _f
		$V_{we} = 1.45 \cdot 0.85 \cdot \left(rac{0.5 \cdot \pi \cdot 91.375^{-2}}{144} + 2 \cdot 47.3344 ight)$	229.25 lb _f
		$Q_t = rac{4,006.21\cdot 117}{85.375\cdot { m Sin}(120\ /\ 2)}$	6,339.55 lb _f
		$Q_l = \frac{229.25 \cdot 117}{392}$	68.42 lb _f
		$Q = 336,813 + \max[6,339.55,68.42]$	343,152.55 lb _f

Load Case 1: Wind, Operating & New

Longitudinal stress between saddles (Wind, Operating & New, left saddle loading and geometry govern)

$$S_1 = \pm \frac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = \frac{3 \cdot 0.491 \cdot 123,030.75 \cdot (504 \ / \ 12)}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 246 \text{ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{1t} = S_1 + S_p = \frac{8.057}{1}$ psi Maximum compressive stress (shut down) $S_{1c} = S_1 = \frac{246}{1}$ psi

$$\label{eq:complexity} \begin{split} \text{Tensile stress is acceptable (} &\leq 1.2 \cdot S \cdot E = 23,\!280 \quad \text{psi)} \\ \text{Compressive stress is acceptable (} &\leq 1.2 \cdot S_c = 12,\!394 \quad \text{psi)} \end{split}$$

Longitudinal stress at the right saddle (Wind, Operating & New)

$$L_e = rac{2 \cdot H_l}{3} + L + rac{2 \cdot H_r}{3} = rac{2 \cdot 43.3}{3} + 504 + rac{2 \cdot 43.3}{3} = 561.7333 ext{ in }$$

$$w = \frac{W_t}{L_e} = \frac{205,371}{561.7333} = 365.6 \text{ lb}_f/\text{in}$$

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 365.6 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,429.9 \quad \text{lb}_f\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{\,}'}{\pi \cdot R^2 \cdot t} = rac{669,429.9 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 203~~{
m psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{8,014}{5}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{203}{5}$ psi

Tensile stress is acceptable ($\leq 1.2 \cdot S = 23,280$ psi)

Compressive stress is acceptable ($\leq 1.2 \cdot S_c = 12,394$ psi)

Tangential shear stress in the shell (right saddle, Wind, Operating & New)

 $Q_{shear} = Q - w \cdot \left(A_r + \frac{2 \cdot H_r}{3}\right) = 120,761.75 - 365.6 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 89,734.3 \ \text{lb}_f$

 $S_3 = \frac{K_{2.2} \cdot Q_{\textit{shear}}}{R \cdot t} = \ \frac{1.1707 \cdot 89,734.3}{84.6875 \cdot 1.375} = \underline{902} \ \text{psi}$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15{,}520$ psi)

Circumferential stress at the right saddle horns (Wind, Operating & New)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-120,761.75}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 120,761.75 \cdot 84.6875}{504 \cdot 1.375 ^2} \\ &= \underline{-4.057} \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 29,100$ psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over right saddle (Wind, Operating & New)

$$S_{5} = \frac{K_{5} \cdot Q}{(t+t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7603 \cdot 120,761.75}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= \underline{2.664} \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 14{,}550~{
m psi}$)

Saddle splitting load (right, Wind, Operating & New)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28$$
 = 28.2865 in²

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 120,761.75}{28.2865} = \frac{869}{28}$$
 psi

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ \mathrm{psi}
ight)$

Longitudinal stress at the left saddle (Wind, Operating & New)

 $L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333$ in

$$w = rac{W_t}{L_e} = rac{205,371}{561.7333} = 365.6 \ \ {
m lb}_f/{
m in}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= 365.6 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,429.9 \quad \text{lb}_{f}\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{\,}'}{\pi \cdot R^2 \cdot t} = rac{669,429.9 \cdot 9.3799}{\pi \cdot 84.6875 \ ^2 \cdot 1.375} = 203 {
m \ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{8.014}{2}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{203}{2}$ psi

$$\label{eq:complexity} \begin{split} \text{Tensile stress is acceptable (} &\leq 1.2 \cdot S = 23,\!280 \hspace{0.1cm} \text{psi)} \\ \text{Compressive stress is acceptable (} &\leq 1.2 \cdot S_c = 12,\!394 \hspace{0.1cm} \text{psi)} \end{split}$$

Tangential shear stress in the shell (left saddle, Wind, Operating & New)

$$\begin{split} Q_{shear} &= Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 123,030.75 - 365.6 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 92,003.3 \quad \text{lb}_f \\ S_3 &= \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 92,003.3}{84.6875 \cdot 1.375} = \frac{925}{925} \quad \text{psi} \end{split}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15{,}520$ psi)

Circumferential stress at the left saddle horns (Wind, Operating & New)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-123,030.75}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 123,030.75 \cdot 84.6875}{504 \cdot 1.375 ^2} \\ &= \underline{-4.133} \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 29,100$ psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over left saddle (Wind, Operating & New)

$$S_{5} = \frac{K_{5} \cdot Q}{(t+t_{p}) \cdot (t_{s}+1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7603 \cdot 123,030.75}{(1.375+0.375) \cdot (0.625+1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= 2.714 \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 14{,}550~{
m psi})$

Saddle splitting load (left, Wind, Operating & New)

Area resisting splitting force = Web area + wear plate area

 $A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28$ = 28.2865 in²

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 123,030.75}{28.2865} = \underline{885} \text{ psi}$$

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ \mathrm{psi}
ight)$

Load Case 2: Wind, Operating & Corr

Longitudinal stress between saddles (Wind, Operating & Corr, left saddle loading and geometry govern)

$$S_1 = \pm \frac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = \frac{3 \cdot 0.491 \cdot 123,011.75 \cdot (504 \ / \ 12)}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 246 \text{ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{1t} = S_1 + S_p = \frac{8.057}{1}$ psi Maximum compressive stress (shut down) $S_{1c} = S_1 = \frac{246}{1}$ psi

Tensile stress is acceptable ($\leq 1.2 \cdot S \cdot E = 23,280$ psi)

Compressive stress is acceptable ($\leq 1.2 \cdot S_c = 12,394$ psi)

Longitudinal stress at the right saddle (Wind, Operating & Corr)

$$\begin{split} L_e &= \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \text{ in} \\ w &= \frac{W_t}{L} = \frac{205,345}{561.7332} = 365.56 \text{ lb}_f/\text{in} \end{split}$$

$$L_e$$
 501.7333

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 365.56 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,345.2 \quad \text{lb}_f\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{'}}{\pi \cdot R^2 \cdot t} = rac{669,345.2 \cdot 9.3799}{\pi \cdot 84.6875 \ ^2 \cdot 1.375} = 203 \;\; \mathrm{psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{8.014}{1000}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{203}{1000}$ psi

 $\label{eq:complexity} \begin{array}{l} \mbox{Tensile stress is acceptable (} \leq 1.2 \cdot S = 23,\!280 \ \mbox{psi}) \\ \mbox{Compressive stress is acceptable (} \leq 1.2 \cdot S_c = 12,\!394 \ \ \mbox{psi}) \end{array}$

Tangential shear stress in the shell (right saddle, Wind, Operating & Corr)

$$\begin{aligned} Q_{shear} &= Q - w \cdot \left(A_r + \frac{2 \cdot H_r}{3}\right) = 120,754.75 - 365.56 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 89,731.23 \quad \text{lb}_f \\ S_3 &= \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 89,731.23}{84.6875 \cdot 1.375} = \underline{902} \quad \text{psi} \end{aligned}$$

Circumferential stress at the right saddle horns (Wind, Operating & Corr)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-120,754.75}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 120,754.75 \cdot 84.6875}{504 \cdot 1.375 \cdot 2} \\ &= \frac{-4.057}{12} \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable (\leq 1.5 \cdot S_a = 29,100 psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over right saddle (Wind, Operating & Corr)

$$S_{5} = \frac{K_{5} \cdot Q}{(t + t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7603 \cdot 120,754.75}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= \underline{2,664} \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 14{,}550~{
m psi})$

Saddle splitting load (right, Wind, Operating & Corr)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28 = 28.2865 \text{ in}^2$$

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 120,754.75}{28.2865} = \underline{869} \text{ psi}$$

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ \mathrm{psi}
ight)$

Longitudinal stress at the left saddle (Wind, Operating & Corr)

$$\begin{split} L_e &= \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \quad \text{in} \\ w &= \frac{W_t}{L_e} = \frac{205,345}{561.7333} = 365.56 \quad \text{lb}_f/\text{in} \end{split}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= 365.56 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,345.2 \quad \text{lb}_{f}\text{-in} \end{split}$$

$$S_{2} = \pm \frac{M_{q} \cdot K_{1}'}{\pi \cdot R^{2} \cdot t} = \frac{669,345.2 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 203 \text{ psi}$$
$$S_{p} = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812 \text{ psi}$$

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{8.014}{5}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{203}{5}$ psi

Tensile stress is acceptable ($\leq 1.2 \cdot S = 23,280$ psi)

Compressive stress is acceptable ($\leq 1.2 \cdot S_c = 12,394$ psi)

Tangential shear stress in the shell (left saddle, Wind, Operating & Corr)

$$Q_{\textit{shear}} = Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 123,011.75 - 365.56 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 91,988.23 \ \text{ lb}_f$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 91,988.23}{84.6875 \cdot 1.375} = \underline{925} \text{ psi}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15,520$ psi)

Circumferential stress at the left saddle horns (Wind, Operating & Corr)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-123,011.75}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 123,011.75 \cdot 84.6875}{504 \cdot 1.375 \cdot 2} \\ &= \frac{-4.132}{12} \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 29,100$ psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over left saddle (Wind, Operating & Corr)

$$\begin{split} S_5 &= \frac{K_5 \cdot Q}{(t+t_p) \cdot \left(t_s + 1.56 \cdot \sqrt{R_o \cdot t_c}\right)} \\ &= \frac{0.7603 \cdot 123,011.75}{(1.375 + 0.375) \cdot \left(0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75}\right)} \\ &= \frac{2,714}{1000} \text{ psi} \end{split}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 14{,}550~{
m psi})$

Saddle splitting load (left, Wind, Operating & Corr)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28 = 28.2865 \text{ in}^2$$

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 123,011.75}{28.2865} = \frac{885}{28}$$
 psi

Stress in saddle is acceptable $\bigg(\leq rac{2}{3} \cdot S_s = 13{,}333 ~~{
m psi} \bigg)$

Load Case 3: Wind, Test

Longitudinal stress between saddles (Wind, Test, left saddle loading and geometry govern)

$$S_{1} = \pm \frac{3 \cdot K_{1} \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^{2} \cdot t} = \frac{3 \cdot 0.491 \cdot 343,152.55 \cdot (504 \ / \ 12)}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 685 \text{ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{339.93 \cdot 84}{2 \cdot 1.375} = 10,383$$
 psi

Maximum tensile stress $S_{1t} = S_1 + S_p = 11,069$ psi Maximum compressive stress (shut down) $S_{1c} = S_1 = 685$ psi

Tensile stress is acceptable ($\leq 0.9 \cdot S_y \cdot E = 34,200$ psi) Compressive stress is acceptable ($\leq 1.2 \cdot S_c = 18,022$ psi)

Longitudinal stress at the right saddle (Wind, Test)

$$\begin{split} L_e &= \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \quad \text{in} \\ w &= \frac{W_t}{L_e} = \frac{666.146}{561.7333} = 1,185.88 \quad \text{lb}_f/\text{in} \end{split}$$

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 1,\!185.88 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 2,\!171,\!378 \text{ lb}_f\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{\,}'}{\pi \cdot R^2 \cdot t} = rac{2,\!171,\!378 \cdot \!9.3799}{\pi \cdot 84.6875^{-2} \cdot \!1.375} = 657 \, {
m psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{339.93 \cdot 84}{2 \cdot 1.375} = 10,383$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = 11,041$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = 657$ psi

Tensile stress is acceptable ($\leq 0.9 \cdot S_y = 34{,}200~{
m psi}$) Compressive stress is acceptable ($\leq 1.2 \cdot S_c = 18,022$ psi)

Tangential shear stress in the shell (right saddle, Wind, Test)

$$\begin{aligned} Q_{shear} &= Q - w \cdot \left(A_r + \frac{2 \cdot H_r}{3}\right) = 335,672.55 - 1,185.88 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 235,031.22 \quad \text{lb}_f \\ S_3 &= \frac{K_{2.2} \cdot Q_{shear}}{R_s} = \frac{1.1707 \cdot 235,031.22}{24.6975 + 1.275} = 2.363 \quad \text{psi} \end{aligned}$$

$$S_3 = \frac{112.2}{R \cdot t} = \frac{11101250,00122}{84.6875 \cdot 1.375} = 2.363$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot (0.9 \cdot S_y) = 27,360$ psi)

Circumferential stress at the right saddle horns (Wind, Test)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-335,672.55}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 335,672.55 \cdot 84.6875}{504 \cdot 1.375 \cdot 2} \\ &= -11.276 \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 0.9 \cdot S_y = 34{,}200~{
m psi}$)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over right saddle (Wind, Test)

$$S_{5} = \frac{K_{5} \cdot Q}{(t + t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7603 \cdot 335, 672.55}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= \underline{7.405} \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.9 \cdot S_y = 34{,}200~{
m psi})$

Saddle splitting load (right, Wind, Test)

Area resisting splitting force = Web area + wear plate area

$$\begin{aligned} A_e &= H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28 = 28.2865 \text{ in}^2 \\ S_6 &= \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 335,672.55}{28.2865} = \underline{2.415} \text{ psi} \end{aligned}$$

Stress in saddle is acceptable ($\leq 0.9 \cdot S_y = 34{,}200~{
m psi}$)

Longitudinal stress at the left saddle (Wind, Test)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333$$
 in

$$w = \frac{W_t}{L_e} = \frac{666,146}{561.7333} = 1,185.88 \ \text{lb}_f/\text{in}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= 1,\!185.88 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^2 - 43.3^2}{4}\right) \\ &= 2,\!171,\!378 \quad \text{lb}_{f} \text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{'}}{\pi \cdot R^2 \cdot t} = rac{2,\!171,\!378 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 657 ~{
m ps}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{339.93 \cdot 84}{2 \cdot 1.375} = 10,383$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = 11.041$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = 657$ psi

Tensile stress is acceptable ($\leq 0.9 \cdot S_y = 34{,}200~{
m psi})$

Compressive stress is acceptable ($\leq 1.2 \cdot S_c = 18,022$ psi)

Tangential shear stress in the shell (left saddle, Wind, Test)

$$\begin{split} Q_{shear} &= Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 343,\!152.55 - 1,\!185.88 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 242,\!511.22 \quad \text{lb}_f \\ S_3 &= \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 242,\!511.22}{84.6875 \cdot 1.375} = \underline{2.438} \quad \text{psi} \end{split}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot (0.9 \cdot S_y) = 27,360$ psi)

Circumferential stress at the left saddle horns (Wind, Test)

$$S_{4} = \frac{-Q}{4 \cdot t \cdot (b + 1.56 \cdot \sqrt{R_{o} \cdot t})} - \frac{12 \cdot K_{3} \cdot Q \cdot R}{L \cdot t^{2}}$$
$$= \frac{-343,152.55}{4 \cdot 1.375 \cdot (12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375})} - \frac{12 \cdot 0.0256 \cdot 343,152.55 \cdot 84.6875}{504 \cdot 1.375^{2}}$$
$$= -11,528 \text{ psi}$$

Circumferential stress at saddle horns is acceptable ($\leq 0.9 \cdot S_y = 34{,}200~{
m psi})$

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over left saddle (Wind, Test)

 $S_{5} = \frac{K_{5} \cdot Q}{(t + t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$ $= \frac{0.7603 \cdot 343,152.55}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$ $= \underline{7.570} \text{ psi}$

Ring compression in shell is acceptable ($\leq 0.9 \cdot S_y = 34{,}200~{
m psi}$)

Saddle splitting load (left, Wind, Test)

Area resisting splitting force = Web area + wear plate area

 $A_e = H_{eff} \, \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28 \text{ = } 28.2865 \text{ in}^2$

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 343, 152.55}{28.2865} = \underline{2.469} \text{ psi}$$

Stress in saddle is acceptable ($\leq 0.9 \cdot S_y = 34,200$ psi)

Load Case 4: Wind, Vacuum

Longitudinal stress between saddles (Wind, Vacuum, left saddle loading and geometry govern)

$$S_1 = \pm \frac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = \frac{3 \cdot 0.491 \cdot 123,011.75 \cdot (504 \ / \ 12)}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 246 \text{ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{15 \cdot 84}{2 \cdot 1.375} = 458$$
 psi

Maximum tensile stress (shut down) $S_{1t} = S_1 = \frac{246}{psi}$ psi Maximum compressive stress $S_{1c} = S_1 + S_p = \frac{704}{psi}$ psi

Tensile stress is acceptable ($\leq 1.2 \cdot S \cdot E = 24,000$ psi) Compressive stress is acceptable ($\leq 1.2 \cdot S_c = 15,766$ psi)

Longitudinal stress at the right saddle (Wind, Vacuum)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \text{ in}$$

$$m = \frac{W_t}{3} = \frac{205,345}{3} = 365.56 \text{ lb} \text{ s/in}$$

$$w = \frac{1}{L_e} = \frac{1}{561.7333} = 365.56 \text{ lb}_f/\text{in}$$

Bending moment at the right saddle:

$$egin{aligned} M_q &= w \cdot \left(rac{2 \cdot H_r \cdot A_r}{3} + rac{A_r^2}{2} - rac{R^2 - H_r^2}{4}
ight) \ &= 365.56 \cdot \left(rac{2 \cdot 43.3 \cdot 56}{3} + rac{56^2}{2} - rac{85.375 \ ^2 - 43.3 \ ^2}{4}
ight) \end{aligned}$$

133/182

$$S_2 = \pm \frac{M_q \cdot K_1'}{\pi \cdot R^2 \cdot t} = \frac{669,345.2 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 203$$
 psi

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{15 \cdot 84}{2 \cdot 1.375} = 458$$
 psi

Maximum tensile stress (shut down) S_{2t} = S₂ = $\frac{203}{95}$ psi Maximum compressive stress S_{2c} = S₂ + S_p = $\frac{661}{95}$ psi

Tensile stress is acceptable ($\leq 1.2 \cdot S = 24,000 \, \mathrm{psi})$

Compressive stress is acceptable ($\leq 1.2 \cdot S_c = 15,766~{
m psi}$)

Tangential shear stress in the shell (right saddle, Wind, Vacuum)

$$Q_{shear} = Q - w \cdot \left(A_r + \frac{2 \cdot H_r}{3}\right) = 120,754.75 - 365.56 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 89,731.23 \quad \text{lb}_f$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 89,731.23}{84.6875 \cdot 1.375} = 902$$
 psi

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 16,000 \, \mathrm{psi}$)

Circumferential stress at the right saddle horns (Wind, Vacuum)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-120,754.75}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 120,754.75 \cdot 84.6875}{504 \cdot 1.375 \cdot 2} \\ &= \underline{-4.057} \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 30{,}000~{
m psi})$

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over right saddle (Wind, Vacuum)

$$S_{5} = \frac{K_{5} \cdot Q}{(t + t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7603 \cdot 120,754.75}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= 2,664 \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 16{,}250~{
m psi})$

Saddle splitting load (right, Wind, Vacuum)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28 = 28.2865 \text{ in}^2$$

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 120,754.75}{28.2865} = \underline{869} \text{ psi}$$

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ \mathrm{psi}
ight)$

Longitudinal stress at the left saddle (Wind, Vacuum)

$$\begin{split} L_e &= \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \text{ in} \\ w &= \frac{W_t}{L_e} = \frac{205,345}{561.7333} = 365.56 \text{ lb}_f/\text{in} \end{split}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= 365.56 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,345.2 \quad \text{lb} \ t\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{\,}'}{\pi \cdot R^2 \cdot t} = rac{669,345.2 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 203 {
m \ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{15 \cdot 84}{2 \cdot 1.375} = 458$$
 psi

Maximum tensile stress (shut down) $S_{2t} = S_2 = 203$ psi Maximum compressive stress $S_{2c} = S_2 + S_p = 661$ psi

 $\label{eq:complexity} \begin{array}{ll} \mbox{Tensile stress is acceptable (} \leq 1.2 \cdot S = 24{,}000 \ \mbox{ psi)} \\ \mbox{Compressive stress is acceptable (} \leq 1.2 \cdot S_c = 15{,}766 \ \ \mbox{ psi)} \end{array}$

Tangential shear stress in the shell (left saddle, Wind, Vacuum)

$$Q_{shear} = Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 123,011.75 - 365.56 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 91,988.23 \text{ lb}_f$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 91,988.23}{84.6875 \cdot 1.375} = \frac{925}{825}$$
 psi

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 16,000$ psi)

Circumferential stress at the left saddle horns (Wind, Vacuum)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-123,011.75}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 123,011.75 \cdot 84.6875}{504 \cdot 1.375 \cdot 2} \\ &= \underline{-4.132} \quad \text{psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 30,000$ psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over left saddle (Wind, Vacuum)

$$S_{5} = \frac{K_{5} \cdot Q}{(t+t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7603 \cdot 123,011.75}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= 2.714 \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 16{,}250~{
m psi})$

Saddle splitting load (left, Wind, Vacuum)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28$$
 = 28.2865 in²

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 123,011.75}{28.2865} = \underline{885} \text{ psi}$$

Stress in saddle is acceptable $\bigg(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ ext{ psi} \bigg)$

Load Case 5: Weight, Operating & New

Longitudinal stress between saddles (Weight, Operating & New, left saddle loading and geometry govern)

$$S_1 = \pm \frac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = \frac{3 \cdot 0.491 \cdot 103,820 \cdot (504 \ / \ 12)}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 207 \text{ psi}$$

 $S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7{,}812 \ \, \mathrm{psi}$

Maximum tensile stress $S_{1t} = S_1 + S_p = \frac{8.019}{1000}$ psi Maximum compressive stress (shut down) $S_{1c} = S_1 = \frac{207}{1000}$ psi

Tensile stress is acceptable ($\leq S \cdot E = 19,400 \, \mathrm{psi}$) Compressive stress is acceptable ($\leq S_c = 10,328 \, \mathrm{psi}$)

Longitudinal stress at the right saddle (Weight, Operating & New)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333$$
 in

$$w = rac{W_t}{L_e} = rac{205,371}{561.7333} = 365.6 ~ \mathrm{lb}_f/\mathrm{in}$$

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 365.6 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,429.9 \quad \text{lb}_f\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{'}}{\pi \cdot R^2 \cdot t} = rac{669,429.9 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 203 {
m \ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{8.014}{1000}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{203}{1000}$ psi

Tensile stress is acceptable ($\leq S = 19,400 \, {
m psi}$) Compressive stress is acceptable ($\leq S_c = 10,328 \, {
m psi}$)

Tangential shear stress in the shell (right saddle, Weight, Operating & New)

$$Q_{shear} = Q - w \cdot \left(A_r + \frac{2 \cdot H_r}{3}\right) = 101,551 - 365.6 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 70,523.55 \text{ lb}_{f}$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 70,523.55}{84.6875 \cdot 1.375} = \underline{709} \text{ psi}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15{,}520~{
m psi}$)

Circumferential stress at the right saddle horns (Weight, Operating & New)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-101,551}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 101,551 \cdot 84.6875}{504 \cdot 1.375 \ ^2} \\ &= \frac{-3.411}{9} \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 29,100$ psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over right saddle (Weight, Operating & New)

$$S_{5} = \frac{K_{5} \cdot Q}{(t + t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7603 \cdot 101,551}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= 2.240 \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 14{,}550~{
m psi})$

Saddle splitting load (right, Weight, Operating & New)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28$$
 = 28.2865 in²

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 101,551}{28.2865} = \underline{731}$$
 psi

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ ext{ psi}
ight)$

Longitudinal stress at the left saddle (Weight, Operating & New)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \text{ in}$$

$$W_t = 205,371 \text{ and } L = 0.1 \text{ or } L$$

$$w = \frac{1}{L_e} = \frac{1}{561.7333} = 365.6 \text{ lb}_f/\text{m}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= 365.6 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,429.9 \quad \text{lb}_f\text{-in} \end{split}$$

$$S_2 = \pm \frac{M_q \cdot K_1'}{\pi \cdot R^2 \cdot t} = \frac{669,429.9 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 203$$
 psi

$$S_p = rac{P \cdot R}{2 \cdot t} = rac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{8.014}{1000}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{203}{1000}$ psi

Tensile stress is acceptable ($\leq S = 19,400$ psi)

Compressive stress is acceptable ($\leq S_c = 10,328$ psi)

Tangential shear stress in the shell (left saddle, Weight, Operating & New)

$$Q_{shear} = Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 103,820 - 365.6 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 72,792.55 \quad \text{lb}_f$$

 $S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 72,792.55}{84.6875 \cdot 1.375} = \underline{732} \text{ psi}$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15{,}520~{
m psi}$)

Circumferential stress at the left saddle horns (Weight, Operating & New)

$$S_{4} = \frac{-Q}{4 \cdot t \cdot (b + 1.56 \cdot \sqrt{R_{o} \cdot t})} - \frac{12 \cdot K_{3} \cdot Q \cdot R}{L \cdot t^{2}}$$
$$= \frac{-103,820}{4 \cdot 1.375 \cdot (12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375})} - \frac{12 \cdot 0.0256 \cdot 103,820 \cdot 84.6875}{504 \cdot 1.375^{-2}}$$
$$= -3.488 \text{ psi}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 29,100$ psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over left saddle (Weight, Operating & New)

$$S_{5} = \frac{K_{5} \cdot Q}{(t + t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7603 \cdot 103,820}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= \underline{2,290} \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 14,550$ psi)

Saddle splitting load (left, Weight, Operating & New)

Area resisting splitting force = Web area + wear plate area

 $A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28$ = 28.2865 in²

$$S_6 = rac{K_8 \cdot Q}{A_e} = rac{0.2035 \cdot 103,820}{28.2865} = rac{747}{7} ext{ psi}$$

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ ext{ psi}
ight)$

Load Case 6: Weight, Operating & Corr

Longitudinal stress between saddles (Weight, Operating & Corr, left saddle loading and geometry govern)

$$S_1 = \pm rac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = rac{3 \cdot 0.491 \cdot 103,801 \cdot (504 \ / \ 12)}{\pi \cdot 84.6875 \ ^2 \cdot 1.375} = 207 \ \mathrm{psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{1t} = S_1 + S_p = \frac{8.019}{1000}$ psi Maximum compressive stress (shut down) $S_{1c} = S_1 = \frac{207}{1000}$ psi

Tensile stress is acceptable ($\leq S \cdot E = 19,400 \text{ psi}$) Compressive stress is acceptable ($\leq S_c = 10,328 \text{ psi}$)

Longitudinal stress at the right saddle (Weight, Operating & Corr)

 $L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \text{ in}$

 $w = \frac{W_t}{L_e} = \frac{205{,}345}{561.7333} = 365.56 \ \ \mathrm{lb}_f/\mathrm{in}$

Bending moment at the right saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 365.56 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375 \cdot 2 - 43.3 \cdot 2}{4}\right) \\ &= 669,345.2 \quad \text{lb}_f\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1{\,}'}{\pi \cdot R^2 \cdot t} = rac{669,345.2 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 203 {
m \ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{8,014}{5}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{203}{5}$ psi

Tensile stress is acceptable ($\leq S = 19,400$ psi)

Compressive stress is acceptable ($\leq S_c = 10,328$ psi)

Tangential shear stress in the shell (right saddle, Weight, Operating & Corr)

$$\begin{split} Q_{shear} &= Q - w \cdot \left(A_r + \frac{2 \cdot H_r}{3}\right) = 101{,}544 - 365{,}56 \cdot \left(56 + \frac{2 \cdot 43{,}3}{3}\right) = 70{,}520{,}48 \quad \text{lb}_f \\ S_3 &= \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1{,}1707{,}70{,}520{,}48}{84{,}6875{,}1{,}375} = \frac{709}{9} \text{ psi} \end{split}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15{,}520$ psi)

Circumferential stress at the right saddle horns (Weight, Operating & Corr)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-101,544}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 101,544 \cdot 84.6875}{504 \cdot 1.375^{-2}} \\ &= -3.411 \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 29,100$ psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over right saddle (Weight, Operating & Corr)

$$S_5 = \frac{K_5 \cdot Q}{(t+t_p) \cdot (t_s + 1.56 \cdot \sqrt{R_o \cdot t_c})}$$
$$= \frac{0.7603 \cdot 101,544}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= 2.240 \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 14{,}550~{
m psi})$

-)

Saddle splitting load (right, Weight, Operating & Corr)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28 = 28.2865 \text{ in}^2$$

$$S_6 = rac{K_8 \cdot Q}{A_e} = rac{0.2035 \cdot 101,544}{28.2865} = rac{7.31}{7.31} \; \mathrm{psi}$$

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ \mathrm{psi}
ight)$

Longitudinal stress at the left saddle (Weight, Operating & Corr)

$$\begin{split} L_e &= \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \quad \text{in} \\ w &= \frac{W_t}{L_e} = \frac{205,345}{561.7333} = 365.56 \quad \text{lb}_f/\text{in} \end{split}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= 365.56 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,345.2 \quad \text{lb}_f\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1 \ '}{\pi \cdot R^2 \cdot t} = rac{669,345.2 \cdot 9.3799}{\pi \cdot 84.6875 \ ^2 \cdot 1.375} = 203 {
m \ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{255.74 \cdot 84}{2 \cdot 1.375} = 7,812$$
 psi

Maximum tensile stress $S_{2t} = S_2 + S_p = \frac{8.014}{1000}$ psi Maximum compressive stress (shut down) $S_{2c} = S_2 = \frac{203}{1000}$ psi

Tensile stress is acceptable ($\leq S = 19,400~{
m psi}$) Compressive stress is acceptable ($\leq S_c = 10,328~{
m psi}$)

Tangential shear stress in the shell (left saddle, Weight, Operating & Corr)

$$Q_{shear} = Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 103,801 - 365.56 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 72,777.48 \quad \text{lb}_f$$

$$S_3 = \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 72,777.48}{84.6875 \cdot 1.375} = \underline{732} \text{ psi}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 15{,}520 \, \mathrm{psi}$)

Circumferential stress at the left saddle horns (Weight, Operating & Corr)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-103,801}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 103,801 \cdot 84.6875}{504 \cdot 1.375 \cdot 2} \\ &= -3.487 \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 29,100$ psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over left saddle (Weight, Operating & Corr)

$$\begin{split} S_5 &= \frac{K_5 \cdot Q}{(t+t_p) \cdot \left(t_s + 1.56 \cdot \sqrt{R_o \cdot t_c}\right)} \\ &= \frac{0.7603 \cdot 103,801}{(1.375 + 0.375) \cdot \left(0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75^{-}}\right)} \\ &= \frac{2.290}{1000} \text{ psi} \end{split}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 14{,}550~{
m psi})$

Saddle splitting load (left, Weight, Operating & Corr)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28$$
 = 28.2865 in²

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 103,801}{28.2865} = \frac{747}{28}$$
 psi

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ \mathrm{psi}
ight)$

Load Case 7: Weight, Vacuum

Longitudinal stress between saddles (Weight, Vacuum, left saddle loading and geometry govern)

$$S_1 = \pm \frac{3 \cdot K_1 \cdot Q \cdot (L \ / \ 12)}{\pi \cdot R^2 \cdot t} = \frac{3 \cdot 0.491 \cdot 103,801 \cdot (504 \ / \ 12)}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 207 \text{ psi}$$

$$S_p = \frac{P \cdot R}{2 \cdot t} = \frac{15 \cdot 84}{2 \cdot 1.375} = 458$$
 psi

Maximum tensile stress (shut down) $S_{1t} = S_1 = \frac{207}{9}$ psi Maximum compressive stress $S_{1c} = S_1 + S_p = \frac{665}{9}$ psi

Tensile stress is acceptable ($\leq S \cdot E = 20,000$ psi)

Compressive stress is acceptable ($\leq S_c = 13,139~{
m psi}$)

Longitudinal stress at the right saddle (Weight, Vacuum)

$$L_e = \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \text{ in}$$

$$w = \frac{W_t}{L_e} = \frac{205,345}{561.7333} = 365.56 \text{ lb}_f/\text{in}$$

Bending moment at the right saddle:
$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_r \cdot A_r}{3} + \frac{A_r^2}{2} - \frac{R^2 - H_r^2}{4}\right) \\ &= 365.56 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,345.2 \quad \text{lb}_f\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot K_1'}{\pi \cdot R^2 \cdot t} = rac{669,345.2 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 203 ~
m psi$$

$$S_p = \frac{I \cdot R}{2 \cdot t} = \frac{13 \cdot 84}{2 \cdot 1.375} = 458$$
 psi

Maximum tensile stress (shut down) S_{2t} = S₂ = $\frac{203}{psi}$ psi Maximum compressive stress S_{2c} = S₂ + S_p = $\frac{661}{psi}$ psi

Tensile stress is acceptable ($\leq S = 20,000 \text{ psi}$) Compressive stress is acceptable ($\leq S_c = 13,139 \text{ psi}$)

Tangential shear stress in the shell (right saddle, Weight, Vacuum)

$$\begin{split} Q_{shear} &= Q - w \cdot \left(A_r + \frac{2 \cdot H_r}{3}\right) = 101{,}544 - 365{,}56 \cdot \left(56 + \frac{2 \cdot 43{,}3}{3}\right) = 70{,}520{,}48 \quad \text{lb}_f \\ S_3 &= \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707{,}70{,}520{,}48}{84{,}6875{,}1{,}375} = \underline{709} \quad \text{psi} \end{split}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 16,000 \, \mathrm{psi}$)

Circumferential stress at the right saddle horns (Weight, Vacuum)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-101,544}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 101,544 \cdot 84.6875}{504 \cdot 1.375 \cdot 2} \\ &= \underline{-3.411} \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 30,000$ psi)

The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over right saddle (Weight, Vacuum)

$$S_{5} = \frac{K_{5} \cdot Q}{(t + t_{p}) \cdot (t_{s} + 1.56 \cdot \sqrt{R_{o} \cdot t_{c}})}$$
$$= \frac{0.7603 \cdot 101,544}{(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})}$$
$$= 2.240 \text{ psi}$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 16,250$ psi)

Saddle splitting load (right, Weight, Vacuum)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28 = 28.2865 \text{ in}^2$$

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 101,544}{28.2865} = \frac{731}{731}$$
 psi

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ ext{ psi}
ight)$

Longitudinal stress at the left saddle (Weight, Vacuum)

$$\begin{split} L_e &= \frac{2 \cdot H_l}{3} + L + \frac{2 \cdot H_r}{3} = \frac{2 \cdot 43.3}{3} + 504 + \frac{2 \cdot 43.3}{3} = 561.7333 \text{ in} \\ w &= \frac{W_t}{L_e} = \frac{205,345}{561.7333} = 365.56 \text{ lb}_f/\text{in} \end{split}$$

Bending moment at the left saddle:

$$\begin{split} M_q &= w \cdot \left(\frac{2 \cdot H_l \cdot A_l}{3} + \frac{A_l^2}{2} - \frac{R^2 - H_l^2}{4}\right) \\ &= 365.56 \cdot \left(\frac{2 \cdot 43.3 \cdot 56}{3} + \frac{56^2}{2} - \frac{85.375^{-2} - 43.3^{-2}}{4}\right) \\ &= 669,345.2 \quad \text{lb}_f\text{-in} \end{split}$$

$$S_2 = \pm rac{M_q \cdot {K_1}'}{\pi \cdot R^2 \cdot t} = rac{669,345.2 \cdot 9.3799}{\pi \cdot 84.6875^{-2} \cdot 1.375} = 203 \;\; {
m psi}$$

$$S_p = rac{P \cdot R}{2 \cdot t} = rac{15 \cdot 84}{2 \cdot 1.375} = 458$$
 psi

Maximum tensile stress (shut down) S_{2t} = S₂ = $\frac{203}{psi}$ psi Maximum compressive stress S_{2c} = S₂ + S_p = $\frac{661}{psi}$ psi

Tensile stress is acceptable ($\leq S = 20,000$ psi) Compressive stress is acceptable ($\leq S_c = 13,139$ psi)

Tangential shear stress in the shell (left saddle, Weight, Vacuum)

$$\begin{split} Q_{shear} &= Q - w \cdot \left(A_l + \frac{2 \cdot H_l}{3}\right) = 103,801 - 365.56 \cdot \left(56 + \frac{2 \cdot 43.3}{3}\right) = 72,777.48 \quad \text{lb}_f \\ S_3 &= \frac{K_{2.2} \cdot Q_{shear}}{R \cdot t} = \frac{1.1707 \cdot 72,777.48}{84.6875 \cdot 1.375} = \underline{732} \quad \text{psi} \end{split}$$

Tangential shear stress is acceptable ($\leq 0.8 \cdot S = 16{,}000~{
m psi}$)

Circumferential stress at the left saddle horns (Weight, Vacuum)

$$\begin{split} S_4 &= \frac{-Q}{4 \cdot t \cdot \left(b + 1.56 \cdot \sqrt{R_o \cdot t}\right)} - \frac{12 \cdot K_3 \cdot Q \cdot R}{L \cdot t^2} \\ &= \frac{-103,801}{4 \cdot 1.375 \cdot \left(12 + 1.56 \cdot \sqrt{85.375 \cdot 1.375}\right)} - \frac{12 \cdot 0.0256 \cdot 103,801 \cdot 84.6875}{504 \cdot 1.375 \cdot 2} \\ &= -3.487 \text{ psi} \end{split}$$

Circumferential stress at saddle horns is acceptable ($\leq 1.5 \cdot S_a = 30,000 \text{ psi}$) The wear plate was not considered in the calculation of S₄ because the wear plate width is not at least $\{b + 1.56 \cdot \sqrt{R_o \cdot t}\} = 28.9021$ in

Ring compression in shell over left saddle (Weight, Vacuum)

$$S_5 = rac{K_5 \cdot Q}{(t+t_p) \cdot ig(t_s+1.56 \cdot \sqrt{R_o \cdot t_c}ig)}$$

$$0.7603 \cdot 103,801$$

$$(1.375 + 0.375) \cdot (0.625 + 1.56 \cdot \sqrt{85.375 \cdot 1.75})$$

Ring compression in shell is acceptable ($\leq 0.5 \cdot S_y = 16{,}250~{
m psi}$)

Saddle splitting load (left, Weight, Vacuum)

Area resisting splitting force = Web area + wear plate area

$$A_e = H_{eff} \cdot t_s + t_p \cdot W_p = 28.4583 \cdot 0.625 + 0.375 \cdot 28 = 28.2865 \text{ in}^2$$

$$S_6 = \frac{K_8 \cdot Q}{A_e} = \frac{0.2035 \cdot 103,801}{28.2865} = \underline{747}$$
 psi

Stress in saddle is acceptable $\left(\ \leq rac{2}{3} \cdot S_s = 13{,}333 \ \mathrm{psi}
ight)$

Shear stress in anchor bolting, one end slotted

Maximum seismic or wind base shear = 694.69 lb_f

Thermal expansion base shear = $W \cdot \mu$ = 104,902*0.2 = 20,980.4 lb_f

Corroded root area for a 1.5" series 8 threaded bolt = 0.9289 in² (4 per saddle)

Bolt shear stress = $\frac{20,980.4}{0.9289 \cdot 1 \cdot 4} = 5,647$ psi

Anchor bolt stress is acceptable (≤ 20,000 psi)

Shear stress in anchor bolting, transverse

Maximum seismic or wind base shear = 24,280.06 lb _f

Corroded root area for a 1.5" series 8 threaded bolt $= 0.9289~{
m in}^2$ (4 per saddle)

Bolt shear stress = $\frac{24,280.06}{0.9289 \cdot 2 \cdot 4} = 3,267$ psi

Anchor bolt stress is acceptable (≤ 20,000 psi)

Web plate buckling check (Escoe pg 251)

Allowable compressive stress $S_c = min(20,000, 21,394) = 20,000 psi$

$$S_c = \frac{K_i \cdot \pi^2 \cdot E}{12 \cdot \left(1 - 0.3^2\right) \cdot \left(\frac{d_i}{t_s}\right)^2} = \frac{1.28 \cdot \pi^2 \cdot 29 \text{E} + 06}{12 \cdot \left(1 - 0.3^2\right) \cdot \left(\frac{24.75}{0.625}\right)^2} = 21,394 \text{ psi}$$

Allowable compressive load on the saddle

$$b_e = \frac{d_i \cdot t_s}{(d_i \cdot t_s) + 2 \cdot t_w \cdot (b-1)} = \frac{24.75 \cdot 0.625}{(24.75 \cdot 0.625) + 2 \cdot 0.5 \cdot (12-1)} = 0.5844$$

 $F_b = n \cdot (A_s + 2 \cdot b_e \cdot t_s) \cdot S_c = 7 \cdot (5.6875 + 2 \cdot 0.5844 \cdot 0.625) \cdot 20,000 = 898,522.73 \ \text{ lb}_f$

Saddle loading of 346,503.55 lb_f is \leq F_b; satisfactory.

Primary bending + axial stress in the saddle due to end loads (assumes one saddle slotted)

$$\sigma_b = \frac{V \cdot (H_s - x_o) \cdot y}{I} + \frac{Q}{A} = \frac{694.69 \cdot (117 - 70.6046) \cdot 6}{504.89} + \frac{123,030.75}{132.2336} = 1,313 \text{ psi}$$

The primary bending + axial stress in the saddle $\leq S_s$ = 20,000 psi; satisfactory.

Secondary bending + axial stress in the saddle due to end loads (includes thermal expansion, assumes one saddle slotted)

$$\sigma_b = \frac{V \cdot (H_s - x_o) \cdot y}{I} + \frac{Q}{A} = \frac{21,\!675.09 \cdot (117 - 70.6046) \cdot 6}{504.89} + \frac{120,\!761.75}{132.2336} = 12,\!864 \text{ psi}$$

The secondary bending + axial stress in the saddle $\leq 2^{*}S_{V} = 76,000$ psi; satisfactory.

Saddle base plate thickness check (Roark sixth edition, Table 26, case 7a)

where a = 24.75, b = 7.6875 in

$$t_b = \sqrt{\frac{\beta_1 \cdot q \cdot b^2}{1.5 \cdot S_a}} = \sqrt{\frac{3 \cdot 144 \cdot 7.6875^{-2}}{1.5 \cdot 20,000}} = 0.9237 \quad \text{in}$$

The base plate thickness of 1.5 in is adequate.

Foundation bearing check

$$S_f = \frac{Q_{\text{max}}}{F \cdot E} = \frac{346,503.55}{16 \cdot 150} = 144$$
 psi

Concrete bearing stress ≤ 750 psi ; satisfactory.

Slotted hole length (Process Industry Practices VEFV1100)

$$\Delta_t = \max \left[|T_{amb} - T_s|, |T_{amb} - MDMT| \right] = \max \left[|70 - 600|, |70 - 49| \right] = 530^{\circ} F$$

$$S_L = 2 \cdot L_s \cdot \alpha \cdot \Delta_t = 2 \cdot 392 \cdot 7.4 \text{E-} 06 \cdot 530 = 3.0748$$
"

Actual slot length is greater than or equal to the minimum $(3.0749" \ge 3.0748")$; satisfactory.

24" 300# RFWN FEED INLET (N1)

Note: round inside edges per UG-76(c)

Location and Orientation								
Located on	Cylinder #5							
Orientation	0°							
Nozzle center line offset to datum line	23"							
End of nozzle to shell center	123"							
Passes through a Category A joint	No							
Nozzle								
Access opening	No							
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)							
Inside diameter, new	21.5"							
Nominal wall thickness	1.25"							
Corrosion allowance	0"							
Projection available outside vessel, Lpr	31.005"							
Projection available outside vessel to flange face, Lf	37.625"							
Local vessel minimum thickness	1.375"							
Liquid static head included	0 psi							
Reinforcing Pa	d							
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)							
Diameter, D _p	36"							
Thickness, t _e	1.5"							
Is split	No							
Welds								
Inner fillet, Leg ₄₁	0.375"							
Outer fillet, Leg ₄₂	0.625"							
Nozzle to vessel groove weld	1.375"							
Pad groove weld	1.5"							
Radiography								
Longitudinal seam	Full UW-11(a) Type 1							
Circumferential seam	Full UW-11(a) Type 1							

ASME B16.5-2003 Flange						
Description	NPS 24 Class 300 WN A350 LF2 Cl.1					
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)					
Blind included	No					
Rated MDMT	-55°F					
Liquid static head	0 psi					
Consider External Loads on Flange MAWP Rating	No					
MAWP rating	570 psi @ 600°F					
MAP rating	740 psi @ 70°F					
Hydrotest rating	1,125 psi @ 70°F					
PWHT performed	Yes					
Impact Tested	No					
Circumferential joint radiography	Full UW-11(a) Type 1					
Bore diameter, B (specified by purchaser)	21.5"					
	Gasket					
Туре	ASME B16.20 Kammprofile					
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel					
Factor, m	2					
Seating Stress, y	2,500 psi					
Thickness, T	0.145"					
Inner Diameter	24.87"					
Outer Diameter	26.87"					
Notes						
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F						

UCS-66 Material Toughness Requirements Nozzle							
Material impact test temperature per UG-84 =	-49°F						
External nozzle loadings per UG-22 govern the coincident r	atio used.						
Stress ratio $= \frac{t_r \cdot E^*}{t_n - c} = \frac{0.1491 \cdot 1}{1.25 - 0} = 0.119$							
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =							
$MDMT = \min \left[-49, -155 ight] =$	-155°F						
Design MDMT of -49°F is acceptable.							

UCS-66 Material Toughness Requirements Pad							
Material impact test temperature per UG-84 =	-49°F						
$t_r = rac{255.74\cdot 84}{20,000\cdot 1 - 0.6\cdot 255.74} =$	1.0824"						
${ m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872						
$Stress ratio longitudinal = {8,057 \cdot 1 \over 20,000 \cdot 1} =$	0.4029						
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F						
$MDMT = \max \left[T_{impact} - T_R, -155 ight] = \max \left[-49 - 21.3, -155 ight] =$	-70.3°F						
Design MDMT of -49°F is acceptable.							

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Sum	mary (in)
For P = 295.63 psi @ 600 °F The opening is adequately reinforced							The nozzle pas	ses UG-45
A required	A A A A_1 A_2 A_3 A_5 A welds							t _{min}
27.7748	27.7762	1.7877	7.4573		18	0.5312	0.3281	1.25

UG-41 Weld Failure Path Analysis Summary (Ib _f)								
All failure paths are stronger than the applicable weld loads								
Weld load W	Weld load Weld load Path 1-1 Weld load Path 2-2 W W1-1 strength W2-2 strength					Path 3-3 strength		
508,182.03	504,176.9	942,581.86	214,086.76	1,690,362.19	570,864.4	1,080,131.39		

UW-16 Weld Sizing Summary									
Weld description Required weld size (in) Actual weld size (in) Status									
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

WRC 107												
Load Case	P (psi)	P _r (Ib _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	295.63	-7,555	-428,580	0	428,580	0	0	26,679	58,200	20,318	29,100	No
Load case 1 (Hot Shut Down)	0	-7,555	-428,580	0	428,580	0	0	8,619	58,200	1,896	29,100	No

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.25}{11.375}\right) \cdot \left(1 - \frac{11.375}{\infty}\right) = 5.4945 \,\%$$

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Sum	mary (in)
For P = 304.78 psi @ 70 °F The opening is adequately reinforced						The nozzle pas	ses UG-45	
A A A A_1 A_2 A_3 A_5 A welds t _{req}						t _{req}	t _{min}	
27.7752	27.7758	1.7873	7.4573	-	18	0.5312	0.3281	1.25

UG-41 Weld Failure Path Analysis Summary (lb _f)								
All failure paths are stronger than the applicable weld loads								
Weld load W Weld load W ₁₋₁ Path 1-1 strength Weld load W ₂₋₂ Path 2-2 strength Weld load W ₃₋₃ Path 3-3 strength						Path 3-3 strength		
523,914.6	519,770	971,733.87	220,708	1,742,641.44	588,520	1,113,537.51		

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)							UG-45 Sum	mary (in)	
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced						The nozzle pas	ses UG-45		
A required	A available	A 1	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}		
14.7813	26.1353	-	7.6041	-	18	0.5312	0.1808	1.25	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description	Actual weld size (in)	Status							
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

4" 300# RFWN DRAIN (N5)

Onentation	100		
Nozzle center line offset to datum line	23"		
End of nozzle to shell center	97.375"		
Passes through a Category A joint	No		
Nozzle			
Description	NPS 4 Sch 160		
Access opening	No		
Material specification	SA-333 6 Wld & smls pipe (II-D p. 10, ln. 8)		
Inside diameter, new	3.438"		
Pipe nominal wall thickness	0.531"		
Pipe minimum wall thickness ¹	0.4646"		
Corrosion allowance	0"		
Projection available outside vessel, Lpr	8.62"		
Projection available outside vessel to flange face, Lf	12"		
Local vessel minimum thickness	1.375"		
Liquid static head included	0 psi		
Reinforcing Pa	ad		
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)		
Diameter, D _p	8.5"		
Thickness, t _e	1"		
Is split	No		
Welds			
Inner fillet, Leg ₄₁	0.375"		
Outer fillet, Leg ₄₂	0.625"		
Nozzle to vessel groove weld	1.375"		
Pad groove weld	1"		
Radiography			
Longitudinal seam	Welded pipe		
Circumferential seam	Full UW-11(a) Type 1		

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2003 Flange							
Description	NPS 4 Class 300 WN A350 LF2 Cl.1						
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)						
Blind included	No						
Rated MDMT	-55°F						
Liquid static head	0 psi						
Consider External Loads on Flange MAWP Rating	No						
MAWP rating	570 psi @ 600°F						
MAP rating	740 psi @ 70°F						
Hydrotest rating	1,125 psi @ 70°F						
PWHT performed	Yes						
Impact Tested	No						
Circumferential joint radiography	Full UW-11(a) Type 1						
	Gasket						
Туре	ASME B16.20 Kammprofile						
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel						
Factor, m	2						
Seating Stress, y	2,500 psi						
Thickness, T	0.145"						
Inner Diameter	4.87"						
Outer Diameter	6.06"						
	Notes						
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F							

UCS-66 Material Toughness Requirements Nozzle							
Impact test temperature per material specification =							
External nozzle loadings per UG-22 govern the coincident ratio used.							
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{0.0671 \cdot 1}{0.4646 - 0} =$							
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F						
$MDMT = \min \left[T_{impact} - T_{UCS-66(g)}, -155 ight] = \min \left[-50 - 5, -155 ight] =$							
Material is exempt from impact testing at the Design MDMT of -49	°F.						

UCS-66 Material Toughness Requirements Pad								
Material impact test temperature per UG-84 =	-49°F							
$t_r = rac{255.74 \cdot 84}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	1.0824"							
${ m Stress\ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872							
Stress ratio longitudinal $=$ $\frac{8,057 \cdot 1}{20,000 \cdot 1} =$								
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F							
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$	-70.3°F							
Design MDMT of -49°F is acceptable.								

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG	-37 Area	UG-45 Su	nmary (in)					
For P = 314.47 psi @ 600 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
4.9003	4.9415	0.0001	2.0675		2.75	0.1239	0.2074	0.4646

UG-41 Weld Failure Path Analysis Summary (Ib _f)									
All failure paths are stronger than the applicable weld loads									
Weld load W	d load Weld load Path 1-1 W W ₁₋₁ strength		Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
95,064.98	95,863.16	118,953.05	67,482.21	263,217.26	120,832.21	218,856.5			

UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

WRC 107												
Load Case	P (psi)	P _r (Ib _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	314.47	-1,260	-9,648	0	9,648	0	0	20,969	58,200	19,417	29,100	No
Load case 1 (Hot Shut Down)	0	-1,260	-9,648	0	9,648	0	0	1,758	58,200	206	29,100	No

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG	-37 Area	UG-45 Su	nmary (in)					
For P = 322.06 psi @ 70 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
4.9062	4.9063	0.0334	2.0027		2.75	0.1202	0.2074	0.4646

	UG-41 Weld Failure Path Analysis Summary (lb _f)									
All failure paths are stronger than the applicable weld loads										
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength				
97,621.09	97,458	121,406.44	67,428.28	270,671.08	122,428.28	225,625.26				

Reinforcement Calculations for MAEP

UG-37	7 Area Ca	UG-45 Su	mmary (in)						
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced							The nozzle p	asses UG-45	
A required	A available	A 1	A ₂	A 3	A ₅	A welds	t _{req} t _{min}		
2.4695	4.8491		1.9789	-	2.75	0.1202	0.1808	0.4646	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description	Required weld Actual we size (in) size (in)		Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

4" 300# RFWN VENT (N8)

Note: round inside edges per UG-76(c)

Location and Orientation								
Located on	Cylinder #5							
Orientation	0°							
Nozzle center line offset to datum line	64"							
End of nozzle to shell center	123"							
Passes through a Category A joint	No							
Nozzle								
Description	NPS 4 Sch 160							
Access opening	No							
Material specification	SA-333 6 Wld & smls pipe (II-D p. 10, ln. 8)							
Inside diameter, new	3.438"							
Pipe nominal wall thickness	0.531"							
Pipe minimum wall thickness ¹	0.4646"							
Corrosion allowance	0"							
Projection available outside vessel, Lpr	34.245"							
Projection available outside vessel to flange face, Lf	37.625"							
Local vessel minimum thickness	1.375"							
Liquid static head included	0 psi							
Reinforcing Pa	ad							
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)							
Diameter, D _p	8.5"							
Thickness, t _e	1"							
Is split	No							
Welds								
Inner fillet, Leg ₄₁	0.375"							
Outer fillet, Leg ₄₂	0.625"							
Nozzle to vessel groove weld	1.375"							
Pad groove weld	1"							
Radiography								
Longitudinal seam	Welded pipe							
Circumferential seam	Full UW-11(a) Type 1							

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2003 Flange							
Description	NPS 4 Class 300 WN A350 LF2 Cl.1						
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)						
Blind included	No						
Rated MDMT	-55°F						
Liquid static head	0 psi						
Consider External Loads on Flange MAWP Rating	No						
MAWP rating	570 psi @ 600°F						
MAP rating	740 psi @ 70°F						
Hydrotest rating	1,125 psi @ 70°F						
PWHT performed	Yes						
Impact Tested	No						
Circumferential joint radiography	Full UW-11(a) Type 1						
	Gasket						
Туре	ASME B16.20 Kammprofile						
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel						
Factor, m	2						
Seating Stress, y	2,500 psi						
Thickness, T	0.145"						
Inner Diameter	4.87"						
Outer Diameter	6.06"						
	Notes						
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F							

UCS-66 Material Toughness Requirements Nozzle							
Impact test temperature per material specification =							
External nozzle loadings per UG-22 govern the coincident ratio used.							
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.0671 \cdot 1}{0.4646 - 0} =$							
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-155°F						
$MDMT = \min \left[T_{impact} - T_{UCS-66(g)}, -155 ight] = \min \left[-50 - 5, -155 ight] =$							
Material is exempt from impact testing at the Design MDMT of -49	°F.						

UCS-66 Material Toughness Requirements Pad								
Material impact test temperature per UG-84 =								
$t_r = rac{255.74 \cdot 84}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	1.0824"							
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$	0.7872							
$Stress ratio longitudinal = {8,057 \cdot 1 \over 20,000 \cdot 1} =$	0.4029							
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	21.3°F							
$MDMT = \max \left[T_{impact} - T_R, -155 ight] = \max \left[-49 - 21.3, -155 ight] =$								
Design MDMT of -49°F is acceptable.								

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG	-37 Area	UG-45 Su	nmary (in)					
For P = 314.47 psi @ 600 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
4.9003	4.9415	0.0001	2.0675		2.75	0.1239	0.2074	0.4646

UG-41 Weld Failure Path Analysis Summary (Ib _f)									
All failure paths are stronger than the applicable weld loads									
Weld load W	load Weld load Path 1-1 V W ₁₋₁ strength		Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
95,064.98	95,863.16	118,953.05	67,482.21	263,217.26	120,832.21	218,856.5			

UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

WRC 107												
Load Case	P (psi)	P _r (Ib _f)	M _c (Ib _f -in)	V _c (Ib _f)	M _L (Ib _f -in)	V _L (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	314.47	-1,260	-9,648	0	9,648	0	0	20,969	58,200	19,417	29,100	No
Load case 1 (Hot Shut Down)	0	-1,260	-9,648	0	9,648	0	0	1,758	58,200	206	29,100	No

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG	-37 Area	UG-45 Sur	nmary (in)					
For P = 322.06 psi @ 70 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
4.9062	4.9063	0.0334	2.0027		2.75	0.1202	0.2074	0.4646

UG-41 Weld Failure Path Analysis Summary (Ib _f)									
All failure paths are stronger than the applicable weld loads									
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
97,621.09	97,458	121,406.44	67,428.28	270,671.08	122,428.28	225,625.26			

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)							UG-45 Su	mmary (in)	
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced							The nozzle p	asses UG-45	
A required	A available	A 1	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}		
2.4695	4.7663		1.8961		2.75	0.1202	0.1808	0.4646	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description	Required weld Actual we size (in) size (in		Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

Lifting Lug - 2

Geometry Inputs						
Attached To	Cylinder #5					
Material	SA-516-70N					
Orientation	Longitudinal					
Distance of Lift Point From Datum	100" 0°					
Angular Position	20"					
Height H	17"					
Thickness t	3"					
Hole Diameter, d	3.875"					
Pin Diameter, Dp	3.75"					
Load Eccentricity, a ₁	0"					
Distance from Load to Shell or Pad, a ₂	10"					
Load Angle Normal to Vessel, β	45°					
Load Angle from Vertical, φ	45°					
Welds						
Size, t _w	1.5"					
Collar						
Thickness, t _c	1"					
Diameter, D _c	8.5"					
Weld Size, t _{wc}	1.5"					
Reinforcement Pad						
Width, B _p	18"					
Length, L _p	30"					
Thickness, t _p	1.5"					
Weld Size, t _{wp}	1.5"					

Intermediate Values							
Load Factor	1.8000						
Vessel Weight (new, incl. Load Factor), W	367,872.5 lb						
Lug Weight (new), W _{lug}	578.5 lb						
Distance from Center of Gravity to this lug, x_1	152.3915"						
Distance from Center of Gravity to second lug, x_2	141.6085"						
Allowable Stress, Tensile, σ_t	22,800 psi						
Allowable Stress, Shear, $\sigma_{\!s}$	13,500 psi						
Allowable Stress, Bearing, σ_p	30,000 psi						
Allowable Stress, Bending, σ_{b}	22,000 psi						
Allowable Stress, Weld Shear, $\tau_{\text{allowable}}$	13,500 psi						
Allowable Stress set to 1/3 Sy per ASME B30.20	No						

Summary Values								
Required Lift Pin Diameter, d _{reqd}	<u>3.4376"</u>							
Required Lug Thickness, t _{reqd}	<u>0.5495"</u>							
Required Lug Collar Thickness, t _{c reqd}	<u>0"</u>							
Lug Stress Ratio, σ _{ratio}	<u>0.53</u>							
Weld Shear Stress Ratio, τ_{ratio}	<u>0.95</u>							
Lug Design	Acceptable							
Local Stresses WRC 107	Unacceptable							

Lift Forces

 $F_r = {\rm force \ on \ vessel \ at \ lug}$

$$F_r = \left[\frac{W}{\cos(\phi_1)}\right] \cdot \left(1 - \frac{x_1}{x_1 + x_2}\right) = \frac{367,\!872.5}{\cos(45)} \cdot \left(1 - \frac{152.3915}{152.3915 + 141.6085}\right) = \underline{250,\!585 \, \mathrm{lb}_{\mathrm{f}}}$$

where x_1' is the distance between this lug and the center of gravity

 $^{\prime}x_{2}^{\prime}$ is the distance between the second lift lug and the center of gravity

Lug Pin Diameter - Shear stress

$$d_{\text{reqd}} = \sqrt{\frac{2 \cdot F_v}{\pi \cdot \sigma_s}}$$

$$= \sqrt{\frac{2 \cdot 250,585}{\pi \cdot 13,500}} = 3.4376"$$

$$\frac{d_{\text{reqd}}}{D_p} = \frac{3.4376}{3.75} = 0.92 \quad \text{Acceptable}$$

$$\sigma = \frac{F_v}{A}$$

$$= \frac{F_v}{2 \cdot (0.25 \cdot \pi \cdot D_p^2)}$$

$$= \frac{250,585}{2 \cdot (0.25 \cdot \pi \cdot 3.75^2)} = 11,344 \text{ psi}$$

σ		11.344			
	=		=	0.84	Accentable
σ_s		13,500			710000010010

Lug Thickness - Tensile stress

$$t_{\text{reqd}} = \frac{F_v}{L \cdot \sigma_t}$$

= $\frac{250,585}{20 \cdot 22,800} = 0.5495''$

$\frac{1}{t} = \frac{0.925}{3} = 0.18$ Acceptabl	$\frac{t}{t} =$	$\frac{0.5495}{3}$	=	0.18	Acceptabl
--	-----------------	--------------------	---	------	-----------

$$\sigma = \frac{F_v}{A}$$
$$= \frac{F_v}{L \cdot t}$$
$$= \frac{250,585}{20 \cdot 3} = 4,176 \text{ psi}$$

σ	_	4,176	_	0.10	A t - k -
σ_t	=	22,800	=	0.18	Acceptable

Lug Thickness - Bearing stress

$t_{ m reqd}$	=	$\frac{F_v}{D_p\cdot\sigma_p}$			
	=	250,585 3.75·30,000	=	2.2274"	
T	=	$t+2\cdot t_c$			
	=	$3+2\cdot 1$	=	5	
$\frac{T_{\rm reqd}}{T}$	=	$\frac{2.2274}{5}$	=	0.45	Acceptable

Collar required thickness

$t_{ m c\ reqd}$	=	$\max(0,\!0.5\cdot(T_{ ext{reqd}}-t))$			
	=	$\max(0,0.5\cdot(2.2274-3))$)		
	=	<u>0"</u>			
$rac{t_{ m c~reqd}}{t_c}$	=	$\frac{0}{1}$	=	0.00	Acceptable

$$\sigma = \frac{F_v}{A_{\text{bearing}}}$$

$$= \frac{F_v}{D_p \cdot (t + 2 \cdot t_c)}$$

$$= \frac{250,585}{3.75 \cdot (3 + 2 \cdot 1)} = 13,365 \text{ psi}$$

$$\frac{\sigma}{\sigma_p} = \frac{13,365}{30,000} = 0.45 \text{ Acceptable}$$

Lug Thickness - Shear stress

$$t_{\text{reqd}} = \frac{\frac{F_v}{\sigma_s} - 4 \cdot t_c \cdot L_c}{2 \cdot L_{\text{shear}}}$$
$$= \frac{\frac{250,585}{13,500} - 4 \cdot (1 \cdot 3.4901)}{2 \cdot 5.815} = 0.3956"$$

$$\frac{t_{\text{reqd}}}{t} = \frac{0.3956}{3} = 0.13 \quad \text{Acceptable}$$

Collar required thickness

$$\begin{aligned} t_{\rm c \ reqd} &= \frac{\frac{F_v}{\sigma_s} - 2 \cdot t \cdot L_{\rm shear}}{4 \cdot L_c} \\ &= \frac{\frac{250,585}{13,500} - 2 \cdot (3 \cdot 5.815)}{4 \cdot 3.4901} = 0 \\ \frac{t_{\rm c \ reqd}}{t_c} &= \frac{0}{1} = 0.00 \quad \text{Acceptable} \end{aligned}$$

$$\tau = \frac{F_v}{A_{\text{shear}}}$$

$$= \frac{F_v}{2 \cdot t \cdot L_{\text{shear}} + 4 \cdot t_c \cdot L_c}$$

$$= \frac{250,585}{2 \cdot 3 \cdot 5.815 + 4 \cdot 1 \cdot 3.4901} = 5,130 \text{ psi}$$

$$\frac{\tau}{\sigma_s} = \frac{5,130}{13,500} = 0.38 \text{ Acceptable}$$

Shear stress length (per Pressure Vessel and Stacks, A. Keith Escoe)

$$\phi = 55 \cdot \frac{D_p}{d}$$

$$= 55 \cdot \frac{3.75}{3.875}$$

$$= 53.2258^{\circ}$$

$$L_{\text{shear}} = (H - a2 - 0.5 \cdot d) + 0.5 \cdot D_p \cdot (1 - \cos(\phi))$$

$$= (17 - 10 - 0.5 \cdot 3.875) + 0.5 \cdot 3.75 \cdot (1 - \cos(53.2258))$$

$$= 5.815^{"}$$

$$L_c = \text{Collar shear plane length}$$

$$= 3.4901^{"}$$

Lug Plate Stress

Lug stress tensile + bending during lift:

$$\begin{aligned} \sigma_{\text{ratio}} &= \left[\frac{F_{\text{ten}}}{A_{\text{ten}} \cdot \sigma_t}\right] + \left[\frac{M_{\text{bend}}}{Z_{\text{bend}} \cdot \sigma_b}\right] \leq 1 \\ &= \left[\frac{F_r \cdot \cos(\beta)}{t \cdot L \cdot \sigma_t}\right] + \left[\frac{6 \cdot |F_r \cdot \sin(\beta) \cdot \text{Hght} - F_r \cdot \cos(\beta) \cdot a_1|}{t \cdot L_2 \cdot \sigma_b}\right] \leq 1 \\ &= 250,585 \cdot \frac{\cos(45.0)}{3 \cdot 20 \cdot 22,800} + 6 \cdot \frac{|250,585 \cdot \sin(45.0) \cdot 10 - 250,585 \cdot \cos(45.0) \cdot 0|}{3 \cdot 20^2 \cdot 22,000} \\ &= 0.53 \quad \text{Acceptable} \end{aligned}$$

Weld Stress

Weld stress, tensile, bending and shear during lift:

Direct shear:

Shear stress at lift angle 45.00°; lift force = 250,585 lb_f

$$A_{\text{weld}} = 2 \cdot (0.707) \cdot t_w \cdot (L + t)$$

= $2 \cdot (0.707) \cdot 1.5 \cdot (20 + 3) = 48.783 \text{ in}^2$

$$\begin{aligned} \tau_t &= F_{\text{lug}} \cdot \frac{\cos(\beta)}{A_{\text{weld}}} \\ &= 250,585 \cdot \frac{\cos(45.0)}{48.783} \quad =3,632 \text{ psi} \end{aligned}$$

$$\tau_s = F_{\text{lug}} \cdot \frac{\sin(\beta)}{A_{\text{weld}}}$$

$$= 250,585 \cdot \frac{\sin(45.0)}{48.783} = 3,632 \text{ psi}$$

$$\begin{aligned} \tau_b &= M \cdot \frac{c}{I} \\ &= 3 \cdot \frac{F_{\text{lug}} \cdot \sin(\beta) \cdot H \, ght - F_{\text{lug}} \cdot \cos(\beta) \cdot a_1}{0.707 \cdot h \cdot L \cdot (3 \cdot t + L)} \\ &= 3 \cdot \frac{|250,585 \cdot \sin(45.0) \cdot 10 - 250,585 \cdot \cos(45.0) \cdot (0)|}{615.0900} \end{aligned}$$

$$\begin{aligned} \tau_{\text{ratio}} &= \frac{\sqrt{\left(\tau_t + \tau_b\right)^2 + \tau_s^2}}{\tau_{\text{allowable}}} \leq 1 \\ &= \frac{\sqrt{\left(3,632 + 8,642\right)^{-2} + \left(3,632\right)^2}}{13,500} \\ &= 0.95 \end{aligned}$$
 Acceptable

Collar Weld Stress:

$$\tau_c = \frac{F_r}{A_{weld}}$$

$$= \frac{250,585}{2 \cdot 0.707 \cdot 1.5 \cdot \pi \cdot 8.5} = 4,424 \text{ psi}$$

$$\tau_{ratio} = \frac{\tau_c}{\tau_{\text{allowable}}} \leq 1$$

$$= \frac{4,424}{13,500} = 0.33 \text{ Acceptable}$$

Pad Weld Stress, tensile, bending and shear during lift:

Direct shear:

Shear stress at lift angle 45.00°; lift force = 250,585 lb_f

$$\tau_t = F_{\text{lug}} \cdot \frac{\cos(\beta)}{A_{\text{weld}}}$$

= 250,585 \cdot \frac{\cos(45.0)}{101.808} = -1,740 \text{ psi}

$$\tau_s = F_{\text{lug}} \cdot \frac{\sin(\beta)}{A_{\text{weld}}}$$

= 250,585 \cdot \frac{\sin(45.0)}{101.808} = 1,740 \text{ psi}

$$\tau_b = M \cdot \frac{c}{I}$$

$$F_{1} = \sin(\beta) \cdot Habt - F_{2} \cos(\beta) \cdot a$$

$$= 3 \cdot \frac{r_{1ug} \cdot \sin(\beta) \cdot ngnt - r_{1ug} \cdot \cos(\beta) \cdot u_1}{0.707 \cdot h_p \cdot L_p \cdot (3 \cdot W_p + L_p)}$$

= 3 \cdot \frac{|250,585 \cdot \sin(45.0) \cdot 11.5 - 250,585 \cdot \cos(45.0) \cdot (0)|}{2672.4600}

$$\begin{aligned} \tau_{\text{ratio}} &= \frac{\sqrt{\left(\tau_t + \tau_b\right)^2 + \tau_s^2}}{\tau_{\text{allowable}}} \leq 1 \\ &= \frac{\sqrt{\left(1,740 + 2,287\right)^{-2} + \left(1,740\right)^2}}{13,500} \\ &= 0.33 \end{aligned}$$
 Acceptable

WRC 107 Analysis

Geometry						
Height (radial)	17"					
Width (circumferential)	3"					
Length	20"					
Fillet Weld Size:	1.5"					
Located On	Cylinder #5 (30" from left end)					
Location Angle	0.00°					
Reinfor	cement Pad					
Thickness	1.5"					
Width	18"					
Length	30"					
Weld Size	1.5"					

Applied Load	s
Radial Ioad, P _r	-177,190.01 lb _f
Circumferential moment, M _c	0 lb _f -in
Circumferential shear, V _c	0 lb _f
Longitudinal moment, M _L	2,037,685.1 lb _f -in
Longitudinal shear, V _L	177,190.01 lb _f
Torsion moment, M _t	0 lb _f -in
Internal pressure, P	0 psi
Mean shell radius, R _m	84.6875"
Design factor	3

Maximum stresses due to the applied loads at the lug edge

$$\gamma = \frac{R_m}{T} = \frac{84.6875}{2.875} = 29.4565$$

 $C_1 = 3, C_2 = 11.5$ in

Local circumferential pressure stress $= \frac{P \cdot R_i}{T} = 0$ psi

Local longitudinal pressure stress $= \frac{P \cdot R_i}{2 \cdot T} = 0$ psi

Maximum combined stress $(P_L+P_b+Q)=38{,}184~{
m psi}$ Allowable combined stress $(P_L+P_b+Q)=\pm 3\cdot S=\pm 60{,}000~{
m psi}$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 5,829$ psi

Allowable local primary membrane stress $(P_L)=\pm 1.5\cdot S=\pm 30{,}000~{
m psi}$

The maximum local primary membrane stress (P_L) is within allowable limits.

	Stresses at the lug edge per WRC Bulletin 107									
Figure	value	β	A _u	A	B _u	BI	Cu	CI	Du	DI
3C*	4.7001	0.1022	0	0	0	0	3,420	3,420	3,420	3,420
4C*	5.4011	0.083	3,931	3,931	3,931	3,931	0	0	0	0
1C	0.1877	0.0612	0	0	0	0	24,142	-24,142	24,142	-24,142
2C-1	0.1493	0.0612	19,203	-19,203	19,203	-19,203	0	0	0	0
3A*	0.3967	0.0554	0	0	0	0	0	0	0	0
1A	0.1044	0.0706	0	0	0	0	0	0	0	0
3B*	2.4942	0.0868	-1,898	-1,898	1,898	1,898	0	0	0	0
1B-1	0.0541	0.077	-12,270	12,270	12,270	-12,270	0	0	0	0
Pr	essure stress	*	0	0	0	0	0	0	0	0
Total circumferential stress			8,966	-4,900	37,302	-25,644	27,562	-20,722	27,562	-20,722
Primary membr	Primary membrane circumferential stress*			2,033	5,829	5,829	3,420	3,420	3,420	3,420
3C*	5.0131	0.083	3,648	3,648	3,648	3,648	0	0	0	0
4C*	5.2332	0.1022	0	0	0	0	3,808	3,808	3,808	3,808
1C-1	0.1611	0.0864	20,721	-20,721	20,721	-20,721	0	0	0	0
2C	0.1184	0.0864	0	0	0	0	15,229	-15,229	15,229	-15,229
4A*	0.518	0.0554	0	0	0	0	0	0	0	0
2A	0.0569	0.096	0	0	0	0	0	0	0	0
4B*	0.6773	0.0868	-910	-910	910	910	0	0	0	0
2B-1	0.0776	0.105	-12,905	12,905	12,905	-12,905	0	0	0	0
Pr	essure stress	*	0	0	0	0	0	0	0	0
Total	ongitudinal st	ress	10,554	-5,078	38,184	-29,068	19,037	-11,421	19,037	-11,421
Primary mem	brane longitud	linal stress*	2,738	2,738	4,558	4,558	3,808	3,808	3,808	3,808
S	Shear from M _t		0	0	0	0	0	0	0	0
Cire	c shear from \	/c	0	0	0	0	0	0	0	0
Lon	g shear from v	/L	0	0	0	0	-1,340	-1,340	1,340	1,340
Tot	al Shear stres	s	0	0	0	0	-1,340	-1,340	1,340	1,340
Combin	ed stress (P _L +	P _b +Q)	10,554	-5,078	38,184	-29,068	27,768	-20,911	27,768	-20,911
* denotes pri	mary stress									

Maximum stresses due to the applied loads at the pad edge

$$\gamma = rac{R_m}{T} = rac{84.6875}{1.375} = 61.5909$$

$$C_1 = 10.5, C_2 = 16.5$$
 in

Local circumferential pressure stress $= \frac{P \cdot R_i}{T} = 0$ psi

Local longitudinal pressure stress $=\frac{P \cdot R_i}{2 \cdot T} = 0$ psi

Maximum combined stress $(P_L+P_b+Q)=62{,}525~{
m psi}$ Allowable combined stress $(P_L+P_b+Q)=\pm 3\cdot S=\pm 60{,}000~{
m psi}$

WRC 107: The combined stress (P_L+P_b+Q) is excessive (at pad edge)

Maximum local primary membrane stress $(P_L) = 19,547$ psi Allowable local primary membrane stress $(P_L) = \pm 1.5 \cdot S = \pm 30,000$ psi

The maximum local primary membrane stress (P_L) is within allowable limits.

Stresses at the pad edge per WRC Bulletin 107										
Figure	value	β	A _u	A	B _u	BI	Cu	Cl	D _u	DI
3C*	4.7294	0.1916	0	0	0	0	7,197	7,197	7,197	7,197
4C*	8.5426	0.1705	12,999	12,999	12,999	12,999	0	0	0	0
1C	0.0768	0.1464	0	0	0	0	43,186	-43,186	43,186	-43,186
2C-1	0.0442	0.1464	24,855	-24,855	24,855	-24,855	0	0	0	0
3A*	2.4544	0.1441	0	0	0	0	0	0	0	0
1A	0.0768	0.1558	0	0	0	0	0	0	0	0
3B*	6.1939	0.1676	-6,548	-6,548	6,548	6,548	0	0	0	0
1B-1	0.0269	0.1589	-12,925	12,925	12,925	-12,925	0	0	0	0
Pr	essure stress	*	0	0	0	0	0	0	0	0
Total circumferential stress			18,381	-5,479	57,327	-18,233	50,383	-35,989	50,383	-35,989
Primary membrane circumferential stress*			6,451	6,451	19,547	19,547	7,197	7,197	7,197	7,197
3C*	5.4764	0.1705	8,333	8,333	8,333	8,333	0	0	0	0
4C*	8.0258	0.1916	0	0	0	0	12,213	12,213	12,213	12,213
1C-1	0.0652	0.1743	36,663	-36,663	36,663	-36,663	0	0	0	0
2C	0.0394	0.1743	0	0	0	0	22,155	-22,155	22,155	-22,155
4A*	4.4855	0.1441	0	0	0	0	0	0	0	0
2A	0.0349	0.1806	0	0	0	0	0	0	0	0
4B*	2.454	0.1676	-3,327	-3,327	3,327	3,327	0	0	0	0
2B-1	0.0337	0.1812	-14,202	14,202	14,202	-14,202	0	0	0	0
Pr	essure stress	*	0	0	0	0	0	0	0	0
Total	ongitudinal st	ress	27,467	-17,455	62,525	-39,205	34,368	-9,942	34,368	-9,942
Primary mem	brane longitud	linal stress*	5,006	5,006	11,660	11,660	12,213	12,213	12,213	12,213
S	Shear from M _t		0	0	0	0	0	0	0	0
Cir	c shear from V	/c	0	0	0	0	0	0	0	0
Lon	g shear from \	/ _L	0	0	0	0	-1,953	-1,953	1,953	1,953
Tot	al Shear stres	s	0	0	0	0	-1,953	-1,953	1,953	1,953
Combin	ed stress (P _L +	P _b +Q)	27,467	-17,455	62,525	-39,205	50,618	-36,135	50,618	-36,135
* denotes pri	mary stress									

ASME Section VIII Division 1, 2004 Edition, A06 Addenda						
Component		Cylinder				
Material		SA-516 70 (II-D p. 14, In. 20)				
Impact Tested	Normalized	Fine Grain Practice	Maximize MDMT/ No MAWP			
Yes (-49°F)	Yes	Yes	Yes	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Inte	ernal	250 600		40		
Ext	ernal	15	400	-49		
		Static Liq	uid Head			
Con	dition	P _s (psi)	H _s (in)	SG		
Test h	orizontal	7.47	207	1		
		Dimen	sions			
Inner D	Diameter		168"			
Le	ngth	2"				
Nominal Thickness		1.375"				
Corrosion Inner			0"			
	Outer	0"				
		Weight and	d Capacity			
		v	Capacity (US gal)			
N	ew		191.92			
Cor	roded		191.92			
		Insul	ation			
		Thickness (in)	Density (lb/ft ³)	Weight (lb)		
Insulation		4	18	0		
		Spacing(in)	Individual Weight (lb)	Total Weight (lb)		
Insulation Supports		0 0 0				
Radiography						
Longitudinal seam		Full UW-11(a) Type 1				
Left Circumferential seam		Full UW-11(a) Type 1				

Results Summary					
Governing condition	Internal pressure				
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"				
Design thickness due to internal pressure (t)	<u>1.091"</u>				
Design thickness due to external pressure (t_e)	<u>0.8941"</u>				
Maximum allowable working pressure (MAWP)	<u>314.47 psi</u>				
Maximum allowable pressure (MAP)	<u>324.2 psi</u>				
Maximum allowable external pressure (MAEP)	<u>42.99 psi</u>				
Rated MDMT	-70.3 °F				

UCS-66 Material Toughness Requirements				
Material impact test temperature per UG-84 =				
$t_r = \frac{255.74 \cdot 84}{20,000 \cdot 1 - 0.6 \cdot 255.74} =$	1.0824"			
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{1.0824 \cdot 1}{1.375 - 0} =$				
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =				
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 21.3, -155] =$				
Design MDMT of -49°F is acceptable.				

Design thickness, (at 600 °F) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{250 \cdot 84}{19,400 \cdot 1.00 - 0.60 \cdot 250} + 0 = \underline{1.091}"$$

Maximum allowable working pressure, (at 600 °F) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{19,400 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} - 0 = \underline{314.47} \text{ psi}$$

Maximum allowable pressure, (at 70 °F) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{20,000 \cdot 1.00 \cdot 1.375}{84 + 0.60 \cdot 1.375} = \underline{324.2} \text{ psi}$

External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{0.8941} = 190.9811$$

From table G: A = 0.000157

From table CS-2: B = 2,148.5374 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 2,148.54}{3 \cdot (170.75/0.8941)} = 15 \text{ psi}$$

Design thickness for external pressure P_a = 15 psi

 $t_a = t + \text{Corrosion} = 0.8941 + 0 = 0.8941$ "

Maximum Allowable External Pressure, (Corroded & at 400 °F) UG-28(c)

$$\frac{L}{D_o} = \frac{532}{170.75} = 3.1157$$
$$\frac{D_o}{t} = \frac{170.75}{1.375} = 124.1818$$

From table G: A = 0.000290From table CS-2: B = 4,004.3077 psi

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 4,004.31}{3 \cdot (170.75/1.375)} = \underline{42.99} \text{ psi}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.375}{84.6875}\right) \cdot \left(1 - \frac{84.6875}{\infty}\right) = 0.8118\%$$

The extreme fiber elongation does not exceed 5%.

Allowable Compressive Stress, Hot and Corroded- $\rm S_{\rm CHC},$ (table CS-2)

$$A = rac{0.125}{R_o/t} = rac{0.125}{85.375/1.375} = 0.002013$$

B = 10,328 psi

$$S = {19,400 \over 1.00} = 19,400$$
 psi

 $S_{c\!H\!C}~=~\min~(B,S)=$ 10,328 psi

Allowable Compressive Stress, Hot and New- ${\rm S}_{\rm CHN}$

 $S_cHN = S_cHC = 10,328$ psi

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

B = 15,019 psi

$$S = \frac{20,000}{1.00} = 20,000 \text{ psi}$$

 $S_{c\!C\!N}\ =\ \min\ (B,\!S) =$ 15,019 psi

Allowable Compressive Stress, Cold and Corroded- $\mathsf{S}_{\mathsf{cCC}}$

$$S_{c\mathbb{C}} = S_{cCN} = 15{,}019$$
 psi

Allowable Compressive Stress, Vacuum and Corroded- $S_{\text{cVC}},$ (table CS-2)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{85.375/1.375} = 0.002013$$

 $B = 13,139$ psi

$$S = \frac{20,000}{1.00} = 20,000$$
 psi

 $S_{c\!V\!C}\ =\ \min\ (B,\!S\,)=$ 13,139 psi

Ellipsoidal Head #1

ASME Section VIII Division 1, 2004 Edition, A06 Addenda						
Component		Ellipsoidal Head				
Material		SA-516 70 (II-D p. 14, In. 20)				
Attached To		Cylinder #5				
Impact Tested	Normalized	Fine Grain Practice	Maximize MDMT/ No MAWP			
Yes (-49°F)	Yes	Yes	Yes	No		
		Design Pressure (psi)	Design Temperature (°F)	Design MDMT (°F)		
Inte	ernal	250	600	-49		
Ext	ernal	15	400	40		
		Static L	iquid Head			
Con	dition	P _s (psi)	H _s (in)	SG		
Test h	orizontal	7.47	207	1		
		Dime	ensions			
Inner D	Diameter		168"			
Head	l Ratio	2				
Minimum Thickness		1.3"				
Corrosion	Inner	0"				
	Outer		0"			
Length L _{sf}		2"				
Nominal T	hickness t _{sf}	1.375"				
		Weight a	nd Capacity			
		w w	Capacity (US gal) ¹			
N	ew	12,439.93		2,878.84		
Corroded			12,439.93	2,878.84		
Insulation						
		Thickness (in)	Density (lb/ft ³)	Weight (lb)		
Insulation		4	18	1,401.37		
		Spacing(in)	Individual Weight (lb)	Total Weight (lb)		
Insulation Supports		145	50 50			
Radiography						
Category A joints		Full UW-11(a) Type 1				
Head to shell seam		Full UW-11(a) Type 1				

¹ includes straight flange

Results Summary				
Governing condition	internal pressure			
Minimum thickness per UG-16	0.0625" + 0" = 0.0625"			
Design thickness due to internal pressure (t)	<u>1.0839</u> "			
Design thickness due to external pressure (t_e)	<u>0.4459</u> "			
Maximum allowable working pressure (MAWP)	<u>299.77</u> psi			
Maximum allowable pressure (MAP)	<u>309.05</u> psi			
Maximum allowable external pressure (MAEP)	<u>97.01</u> psi			
Rated MDMT	-66.3°F			

UCS-66 Material Toughness Requirements				
Material impact test temperature per UG-84 =				
$t_r = \frac{255.74 \cdot 168}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 255.74} =$	1.0755"			
Stress ratio $= rac{t_r \cdot E^*}{t_n - c} = rac{1.0755 \cdot 1}{1.3 - 0} =$				
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =	17.3°F			
$MDMT = \max [T_{impact} - T_R, -155] = \max [-49 - 17.3, -155] =$				
Design MDMT of -49°F is acceptable.				

Design thickness for internal pressure, (Corroded at 600 °F) UG-32(d)(1)

$$t = \frac{P \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{250 \cdot 168}{2 \cdot 19,400 \cdot 1 - 0.2 \cdot 250} + 0 = \underline{1.0839}$$

Maximum allowable working pressure, (Corroded at 600 °F) UG-32(d)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 19,400 \cdot 1 \cdot 1.3}{168 + 0.2 \cdot 1.3} - 0 = \underline{299.77} \text{ psi}$$

Maximum allowable pressure, (New at 70 °F) UG-32(d)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 20,000 \cdot 1 \cdot 1.3}{168 + 0.2 \cdot 1.3} - 0 = \underline{309.05} \text{ psi}$$

Design thickness for external pressure, (Corroded at 400 °F) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0.8865 \cdot 170.6 = 151.2351$ in

$$A = \frac{0.125}{R_o \ / \ t} = \frac{0.125}{151.2351 \ / \ 0.445813} = 0.000368$$

From Table CS-2: B = 5,088.5176 psi

$$P_a = \frac{B}{R_o \ / \ t} = \frac{5,088.5176}{151.2351 \ / \ 0.4458} = 15 \ \text{psi}$$

t = 0.4458"+Corrosion = 0.4458" + 0" = 0.4458"

Check the external pressure per UG-33(a)(1) UG-32(d)(1)

$$t = \frac{1.67 \cdot P_e \cdot D}{2 \cdot S \cdot E - 0.2 \cdot 1.67 \cdot P_e} + \text{Corrosion} = \frac{1.67 \cdot 15 \cdot 168}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 1.67 \cdot 15} + 0 = 0.1052$$
"

The head external pressure design thickness (te) is 0.4458".

Maximum Allowable External Pressure, (Corroded at 400 °F) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0.8865 \cdot 170.6 = 151.2351$ in

$$A = rac{0.125}{R_o \ / \ t} = rac{0.125}{151.2351 \ / \ 1.3} = 0.001074$$

From Table CS-2: B = 11,285.56 psi

$$P_a = rac{B}{R_o \ / \ t} = rac{11,285.56}{151.2351 \ / \ 1.3} = 97.0094 \ {
m psi}$$

Check the Maximum External Pressure, UG-33(a)(1) UG-32(d)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{(D+0.2 \cdot t) \cdot 1.67} = \frac{2 \cdot 20,000 \cdot 1 \cdot 1.3}{(168+0.2 \cdot 1.3) \cdot 1.67} = 185.06 \text{ psi}$$

The maximum allowable external pressure (MAEP) is <u>97.01</u> psi.

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 1.375}{29.2475}\right) \cdot \left(1 - \frac{29.2475}{\infty}\right) = 3.5259\%$$

The extreme fiber elongation does not exceed 5%.

24" 300# RFWN MANWAY (M2)

lozzle to vessel groove weld	1.3"		
ad groove weld	1"		
Radiography			
Longitudinal seam	Full UW-11(a) Type 1		
Circumferential seam	Full UW-11(a) Type 1		

ASME B16.5-2003 Flange				
Description	NPS 24 Class 300 WN A350 LF2 Cl.1			
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)			
Blind included	Yes			
Rated MDMT	-55°F			
Liquid static head	0 psi			
MAWP rating	570 psi @ 600°F			
MAP rating	740 psi @ 70°F			
Hydrotest rating	1,125 psi @ 70°F			
PWHT performed	Yes			
Impact Tested	No			
Circumferential joint radiography	Full UW-11(a) Type 1			
Bore diameter, B (specified by purchaser) 21.5"				
	Gasket			
Type ASME B16.20 Kammprofile				
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel			
Factor, m	2			
Seating Stress, y	2,500 psi			
Thickness, T	0.145"			
Inner Diameter	24.87"			
Outer Diameter	26.87"			
Notes				
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F				

UCS-66 Material Toughness Requirements Nozzle					
Material impact test temperature per UG-84 =	-49°F				
$t_r = rac{255.74\cdot 10.75}{20,000\cdot 1 - 0.6\cdot 255.74} =$	0.1385"				
${ m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.1385 \cdot 1}{1.25 - 0} =$	0.1108				
Stress ratio \leq 0.35, MDMT per UCS-66(b)(3) =	-155°F				
$MDMT = \min \left[-49, -155 ight] =$	-155°F				
Design MDMT of -49°F is acceptable.					

UCS-66 Material Toughness Requirements Pad				
Material impact test temperature per UG-84 =	-49°F			
$t_r = \frac{255.74 \cdot 0.9 \cdot 168}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 255.74} =$	0.9679"			
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.9679 \cdot 1}{1.3 - 0} =$				
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =				
$MDMT = \max \left[T_{impact} - T_R, -155 ight] = \max \left[-49 - 25.5, -155 ight] =$				
Design MDMT of -49°F is acceptable.				

Reinforcement Calculations for MAWP

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)					UG-45 Sum	mary (in)		
For P = 280.35 psi @ 600 °F The opening is adequately reinforced					The nozzle pas	ses UG-45		
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
24.1896	24.1904	4.5528	7.1064	-	12	0.5312	0.3281	1.25

UG-41 Weld Failure Path Analysis Summary (Ib _f)									
All failure paths are stronger than the applicable weld loads									
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 Weld load strength W ₃₋₃		Path 3-3 strength			
390,940.3	380,969.44	948,748.77	203,641.8	1,379,167.34	444,019.44	1,045,707.66			

UW-16 Weld Sizing Summary							
Weld description	Required weld size (in)	Actual weld size (in)	Status				
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate				
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate				

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 1.25}{11.375}\right) \cdot \left(1 - \frac{11.375}{\infty}\right) = 5.4945 \,\%$$

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Summary (in)	
For P = 289.02 psi @ 70 °F The opening is adequately reinforced							The nozzle passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
24.1891	24.1908	4.5532	7.1064		12	0.5312	0.3281	1.25

UG-41 Weld Failure Path Analysis Summary (lb _f)									
All failure paths are stronger than the applicable weld loads									
Weld load W	Weld load W ₁₋₁	Path 1-1 strength	Weld load W ₂₋₂	Path 2-2 strength	Weld load W ₃₋₃	Path 3-3 strength			
403,015.39	392,752	978,091.51	209,940	1,421,822	457,752	1,078,049.14			

Reinforcement Calculations for MAEP

UG-37 Area Calculation Summary (in ²)							UG-45 Summary (in)	
For Pe = 42.99 psi @ 400 °F The opening is adequately reinforced							The nozzle passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
8.3289	32.0495	12.0851	7.4332		12	0.5312	0.1806	1.25

UG-41 Weld Failure Path Analysis Summary Weld strength calculations are not required for external pressure
UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.2625	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

2" 300# RFWN STEAM OUT (N6B)

Note: round inside edges per UG-76(c)

Location and Orientation										
Located on	Ellipsoidal Head #1									
Orientation	148°									
End of nozzle to datum line	-35.3684"									
Calculated as hillside	Yes									
Distance to head center, R	80"									
Passes through a Category A joint	No									
Nozzle										
Description	NPS 2 XXS									
Access opening	No									
Material specification	SA-333 6 Wld & smls pipe (II-D p. 10, ln. 8)									
Inside diameter, new	1.503"									
Pipe nominal wall thickness	0.436"									
Pipe minimum wall thickness ¹	0.3815"									
Corrosion allowance	0"									
Opening chord length	2.6821"									
Projection available outside vessel, Lpr	14.0551"									
Projection available outside vessel to flange face, Lf	16.8051"									
Local vessel minimum thickness	1.3"									
Liquid static head included	0 psi									
Reinforcing Pa	ad									
Material specification	SA-516 70 (II-D p. 14, In. 20) (normalized)									
Diameter, D _p	8.0104"									
Thickness, t _e	1"									
Is split	No									
Welds										
Inner fillet, Leg ₄₁	0.625"									
Outer fillet, Leg ₄₂	0.625"									
Nozzle to vessel groove weld	1.3"									
Pad groove weld	1"									
Radiography										
Longitudinal seam	Welded pipe									
Circumferential seam	Full UW-11(a) Type 1									

¹Pipe minimum thickness = nominal thickness times pipe tolerance factor of 0.875.

ASME B16.5-2003 Flange							
Description	NPS 2 Class 300 WN A350 LF2 Cl.1						
Bolt Material	SA-193 B7 Bolt <= 2 1/2 (II-D p. 382, In. 33)						
Blind included	No						
Rated MDMT	-55°F						
Liquid static head	0 psi						
Consider External Loads on Flange MAWP Rating	No						
MAWP rating	570 psi @ 600°F						
MAP rating	740 psi @ 70°F						
Hydrotest rating	1,125 psi @ 70°F						
PWHT performed	Yes						
Impact Tested	No						
Circumferential joint radiography	Full UW-11(a) Type 1						
	Gasket						
Туре	ASME B16.20 Kammprofile						
Description	Flexitallic Solid Metal Core Flexpro Facing; 304 S.S. : Metal; Monel						
Factor, m	2						
Seating Stress, y	2,500 psi						
Thickness, T	0.145"						
Inner Diameter	2.75"						
Outer Diameter	3.5"						
	Notes						
Flange is impact tested per material specification to -50°F. Stress ratio = 0.3456 ≤ 0.35, MDMT per UCS-66(b)(3) = -155°F. Bolts rated MDMT per Fig UCS-66 note (e) = -55°F							

UCS-66 Material Toughness Requirements NozzleImpact test temperature per material specification =-50°FExternal nozzle loadings per UG-22 govern the coincident ratio used.-50°FStress ratio = $\frac{t_r \cdot E^*}{t_n - c} = \frac{0.0523 \cdot 1}{0.3815 - 0} =$ 0.1372Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =-155°F $MDMT = \min [T_{impact} - T_{UCS-66(g)}, -155] = \min [-50 - 5, -155] =$ -155°F

Material is exempt from impact testing at the Design MDMT of -49°F.

UCS-66 Material Toughness Requirements Pad								
Material impact test temperature per UG-84 =								
$t_r = \frac{255.74 \cdot 168}{2 \cdot 20,000 \cdot 1 - 0.2 \cdot 255.74} =$	1.0755"							
$\text{Stress ratio} = \frac{t_r \cdot E^*}{t_n - c} = \frac{1.0755 \cdot 1}{1.3 - 0} =$								
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1 =								
$MDMT = \max \left[T_{impact} - T_R, -155 ight] = \max \left[-49 - 17.3, -155 ight] =$								
Design MDMT of -49°F is acceptable.								

Reinforcement Calculations for MAWP

The vessel wall thickness governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (in ²)							UG-45 Sui	nmary (in)
For P = 299.77 psi @ 600 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A A A A_1 A_2 A_3 A_5 A welds						t _{req}	t _{min}
3.6212	4.0527		1.5647		2.1437	0.3443	0.1348	0.3815

	UG-41 Weld Failure Path Analysis Summary (lb _f)										
All failure paths are stronger than the applicable weld loads											
Weld load W	Weld load W Weld load W ₁₋₁ Path 1-1 strength Weld load W ₂₋₂ Path 2-2 strength Weld load W ₃₋₃ Path 3-3 strength										
70,250.79	78,622.38	90,652.66	56,418.21	142,718.2	98,005.99	144,381.22					

UW-16 Weld Sizing Summary									
Weld description	Actual weld size (in)	Status							
Nozzle to pad fillet (Leg ₄₁)	0.25	0.4375	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						

WRC 107												
Load Case	P (psi)	P _r (Ib _f)	M ₁ (Ib _f -in)	V ₂ (Ib _f)	M ₂ (Ib _f -in)	V ₁ (Ib _f)	M _t (Ib _f -in)	Max Comb Stress (psi)	Allow Comb Stress (psi)	Max Local Primary Stress (psi)	Allow Local Primary Stress (psi)	Over stressed
Load case 1	299.77	-710	-2,208	0	2,208	0	0	18,442	58,200	17,625	29,100	No
Load case 1 (Hot Shut Down)	0	-710	-2,208	0	2,208	0	0	922	58,200	105	29,100	No

Reinforcement Calculations for MAP

The vessel wall thickness governs the MAP of this nozzle.

UG-3	7 Area C	UG-45 Sui	mmary (in)					
For P = 309.04 psi @ 70 °F The opening is adequately reinforced							The nozzle p	asses UG-45
A required	A available	A 1	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
3.6551	3.9972		1.5164		2.1468	0.334	0.1348	0.3815

UG-41 Weld Failure Path Analysis Summary (Ib _f)										
All failure paths are stronger than the applicable weld loads										
Weld load W Weld load W ₁₋₁ Path 1-1 strength Weld load W ₂₋₂ Path 2-2 strength Weld load W ₃₋₃ Path 3-3 strength										
73,102.64	79,944	92,964.73	56,392.56	146,527.93	99,328.56	148,846.62				

Reinforcement Calculations for MAEP

UG-	37 Area (UG-45 Sui	nmary (in)					
	For P The openi	The nozzle p	asses UG-45					
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
1.0702	5.7936	1.8286	1.455		2.176	0.334	0.1348	0.3815

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description	Required weld size (in)	Actual weld size (in)	Status						
Nozzle to pad fillet (Leg ₄₁)	0.25	0.4375	weld size is adequate						
Pad to shell fillet (Leg ₄₂)	0.375	0.4375	weld size is adequate						