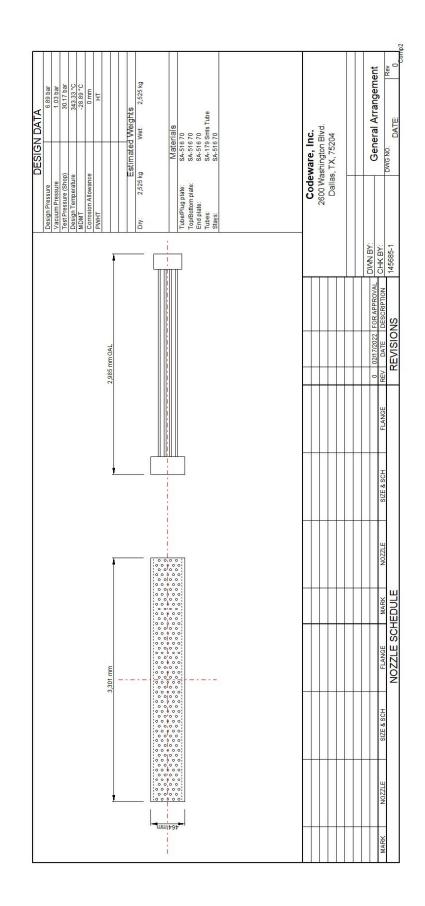

Your Company Name


Your Company Address

Item: Vessel No: Customer: Contract: Designer: Date: Tuesday, May 30, 2023

Table of Contents

General Arrangement Drawing	1
Deficiencies Summary	3
Pressure Summary	4
Settings Summary	6
Thickness Summary	8
Weight Summary	g
Hydrostatic Test	10
Bill of Materials	11
Inlet/Outlet Header	12
Tubes	21
End Plates for Inlet/Outlet Header	23
Return Header	25
End Plates for Return Header	34

No deficiencies found.

Pressure Summary

	Component Summary											
Identifier		P Design (bar)	T Design (°C)	MAWP (bar)	MAP (bar)	MAEP (bar)	T _e external (°C)	MDMT (°C)	MDMT Exemption	Impact Tested		
	Tubesheet	6.89	343.33	34.26	36.65	N/A	343.33	-48	Note 1	No		
	Plugsheet	6.89	343.33	33.82	36.18	N/A	343.33	-48	Note 2	No		
Inlet/Outlet Header	Top / Bottom Plate	6.89	343.33	24.38	26.08	N/A	343.33	-40.25	Note 3	No		
	End Plates	6.89	343.33	22.26	23.81	22.26	343.33	-44.01	Note 4	No		
	Stay Plates	6.89	343.33	74.19	79.37	N/A	343.33	-105	Note 5	No		
<u>Tubes</u>		6.89	343.33	212.4	221.51	114.25	343.33	-105	Note 6	No		
	Tubesheet	6.89	343.33	50.33	53.84	N/A	343.33	-48	Note 7	No		
	Plugsheet	6.89	343.33	49.68	53.15	N/A	343.33	-48	Note 8	No		
Return Header	Top / Bottom Plate	6.89	343.33	37.18	39.77	N/A	343.33	-48	Note 9	No		
	End Plates	6.89	343.33	33.76	36.11	33.76	343.33	-48	Note 10	No		
	Stay Plates	6.89	343.33	90.8	97.13	N/A	343.33	-105	Note 11	No		

Chamber Summary								
Design MDMT	-28.89 °C							
Rated MDMT	-28.89 °C @ 22.26 bar							
MAWP hot & corroded	22.26 bar @ 343.33 °C							
MAP cold & new	23.81 bar @ 21.11 °C							
MAEP	22.26 bar @ 343.33 °C							
(1) The rated MDMT is limited to the design MDMT based	on the setting in the Calculations tab of the Set Mode dialog.							

	Notes for MDMT Rating	
Note #	Exemption	Details
1.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 22°C, (coincident ratio = 0.6072) Rated MDMT of -54.05°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
2.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 21.6°C, (coincident ratio = 0.6151) Rated MDMT of -53.65°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
3.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 8.2°C, (coincident ratio = 0.8534)	UCS-66 governing thickness = 15.88 mm
4.	impact test exemption temperature from Fig UCS-66M Curve B = -23.31°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 3.7°C, (coincident ratio = 0.9348)	UCS-66 governing thickness = 12 mm
5.	is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.2804)	
6.	Material is impact test exempt per UCS-66(d) (NPS 4 or smaller pipe)	
7.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 47.4°C, (coincident ratio = 0.4134) Rated MDMT of -79.45°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
8.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 45.9°C, (coincident ratio = 0.4187) Rated MDMT of -77.95°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
9.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 26.2°C, (coincident ratio = 0.5596) Rated MDMT of -58.25°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
10.	impact test exemption temperature from Fig UCS-66M Curve B = -23.31°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 21.5°C, (coincident ratio = 0.6163) Rated MDMT of -61.81°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 12 mm
11.	is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.2291)	

Settings Summary

COMPRESS 2023 Build 8310								
ASME Section VIII Division 1, 2021 Edition Metric								
Units	MKS							
Datum Line Location	0.00 mm from right seam							
Vessel Design Mode	Design Mode							
Minimum thickness	1.5 mm per UG-16(b)							
Design for cold shut down only	No							
Design for lethal service (full radiography required)	No							
Design nozzles for	Design P only							
Corrosion weight loss	100% of theoretical loss							
UG-23 Stress Increase	1.20							
Skirt/legs stress increase	1.0							
Minimum nozzle projection	0.03 mm							
Juncture calculations for α > 30 only	Yes							
Preheat P-No 1 Materials > 1.25" and <= 1.50" thick	No							
UG-37(a) shell tr calculation considers longitudinal stress	No							
Cylindrical shells made from pipe are entered as minimum thickness	No							
	No							
Nozzles made from pipe are entered as minimum thickness								
ASME B16.9 fittings are entered as minimum thickness	No							
Butt welds	Tapered per Figure UCS-66.3(a)							
Disallow Appendix 1-5, 1-8 calculations under 15 psi	No							
Hydro/Pneumatic Test								
Shop Hydrotest Pressure	1.3 times vessel MAWP [UG-99(b)]							
Test liquid specific gravity	1.00							
Maximum stress during test	90% of yield							
Required Marking - UG-116	lu r							
UG-116(f) Postweld heat treatment	н							
Code Cases\Interpretations								
Use Appendix 46	No							
Use UG-44(b)	No							
Use Code Case 3035	No							
Apply interpretation VIII-1-83-66	Yes							
Apply interpretation VIII-1-86-175	Yes							
Apply interpretation VIII-1-01-37	Yes							
Apply interpretation VIII-1-01-150	Yes							
Apply interpretation VIII-1-07-50	Yes							
Apply interpretation VIII-1-16-85	Yes							
No UCS-66.1 MDMT reduction	No							
No UCS-68(c) MDMT reduction	No							
Disallow UG-20(f) exemptions	No							
Appendix 13								
Apply API 661 Requirements	Yes							
UG-22 Loadings								
UG-22(a) Internal or External Design Pressure	Yes							
UG-22(b) Weight of the vessel and normal contents under operating or test conditions	No							
UG-22(c) Superimposed static reactions from weight of attached equipment (external loads)	No							
UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs	No							
UG-22(f) Wind reactions	No							
UG-22(f) Seismic reactions	No							

UG-22(j)	Test	pressure	and	coincident	static	head	acting	during	the test:	

Yes

Note: UG-22(b),(c) and (f) loads only considered when supports are present.

Note 2: UG-22(d)(1),(e),(f)-snow,(g),(h),(i) are not considered. If these loads are present, additional calculations must be performed.

License Information							
Company Name	Codeware, Inc.						
License	Commercial						
License Key ID	81004						
Support Expires	June 03, 2023						

Thickness Summary

	Header Data										
Component Identifier	Plate	Material	Length (mm)	Width (mm)	Nominal t (mm)	Design t (mm)	Total Corrosion (mm)	Mid-Joint E	Corner-Joint E		
	Top / Bottom Plate	SA-516 70	190.5	3,300.6	15.88	8.23	0	1	1		
	Tubesheet	SA-516 70	463.55	3,300.6	25.4	10.91	0	1	1		
Inlet/Outlet Header	Plugsheet	SA-516 70	463.55	3,300.6	25.4	10.98	0	1	1		
	End Plates	SA-516 70	190.5	431.8	12	6.68	0		1		
	Stay Plates	SA-516 70	3,276.6	190.5	12	1.12	0		1		
	Top / Bottom Plate	SA-516 70	152.4	3,300.6	15.88	6.58	0	1	1		
	Tubesheet	SA-516 70	374.65	3,300.6	25.4	8.84	0	1	1		
Return Header	Plugsheet	SA-516 70	374.65	3,300.6	25.4	8.9	0	1	1		
	End Plates	SA-516 70	152.4	342.9	12	5.42	0		1		
	Stay Plates	SA-516 70	3,276.6	152.4	12	0.91	0		1		

	Component Data												
Component Identifier	Material	Diameter (mm)	Length (mm)	Nominal t (mm)	Design t (mm)	Total Corrosion (mm)	Joint E	Load					
Tubes	SA-179 Smls Tube	25.4 OD	2,590.8	3.18	0.22	0	1.00	External					

	Definitions									
Nominal t	Vessel wall nominal thickness									
Design t	Required vessel thickness due to governing loading + corrosion									
Joint E	Longitudinal seam joint efficiency									
	Load									
Internal	Circumferential stress due to internal pressure governs									
External	External pressure governs									
Wind	Combined longitudinal stress of pressure + weight + wind governs									
Seismic	Combined longitudinal stress of pressure + weight + seismic governs									

Weight Summary

	Weight (kg) Contributed by Vessel Elements												
Commonweat	Metal Met		Insulation	Insulation	Lining	Piping	Opera	ting Liquid	Test Liquid				
Component	New*	Corroded	insulation	Supports		New	Corroded	New	Corroded				
Inlet/Outlet Header	839.3	839.3	0	0	0	0	0	0	261.8	261.8			
Tubes	1,012.2	1,012.2	0	0	0	0	0	0	166	166			
Return Header	673.9	673.9	0	0	0	0	0	0	165.1	165.1			
TOTAL:	2,525.5	2,525.5	0	0	0	0	0	0	426.9	426.9			
*Shells with attache	d nozzles	have weigl	nt reduced b	y material c	ut out fo	r opening.							

	Weight (kg) Contributed by Attachments													
Component	Bod	y Flanges	-	ozzles & langes Beds		Trays	Tray	Rings & Clips	Vertical Loads					
	New	Corroded	New	Corroded	Deus		Supports	Clips	Loaus					
Inlet/Outlet Header	0	0	0	0	0	0	0	0	0					
Return Header	0	0	0	0	0	0	0	0	0					
TOTAL:	0	0	0	0	0	0	0	0	0					

Vessel Totals								
	New	Corroded						
Operating Weight (kg)	2,525	2,525						
Empty Weight (kg)	2,525	2,525						
Test Weight (kg)	2,952	2,952						
Capacity** (liters)	427	427						
**The vessel capacity does not include volume of nozzle, piping or other attachments.								

Hydrostatic Test

Horizontal shop hydrostatic test based on MAWP per UG-99(b)

Gauge pressure at 21.11°C = $1.3 \cdot MAWP \cdot LSR$

 $= 1.3 \cdot 22.26 \cdot 1.0429$

=30.17 bar

	Horizontal shop hydrostatic test								
Identifier	Local test pressure (bar)	ssure static head stress pressure during		Stress during test (kg _f /cm ²)	Allowable test stress (kg _f /cm ²)	Stress excessive?			
Tubes (1)	30.17	0	1.0429	1.30	120.219	1,651.94	No		
End Plates	30.17	0	1.0698	1.30	1,783.426	3,606.736	No		
End Plates	30.17	0	1.0698	1.30	1,175.749	3,606.736	No		

(1) Tubes limits the UG-99(b) stress ratio.
(2) 1.5*0.9*S_y used as the basis for the maximum local primary membrane stress at the nozzle intersection P_L.
(3) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange.
(4) UG-99(I): Custom flange assemblies shall be tested with gaskets having identical geometries and gasket factors, and bolting having identical allowable stress at room temperature as used in the design calculations.

The test temperature of 21.11 °C is warmer than the minimum recommended temperature of -27.01 °C so the brittle fracture provision of UG-99(h) has been met.

Bill of Materials

	Appendix 13 Headers									
Item #	Description	Material	Thk [mm]	Length [mm]	Width [mm]	Weight [kg]	Qty			
Plate1	End Plates	SA-516 70	12	152.4	342.9	4.9	2			
Plate2	End Plates	SA-516 70	12	190.5	431.8	7.7	2			
Plate3	Stay Plates	SA-516 70	12	3,276.6	152.4	46.9	1			
Plate4	Stay Plates	SA-516 70	12	3,276.6	190.5	58.7	1			
Plate5	Top / Bottom Plate	SA-516 70	15.88	3,300.6	152.4	62.5	2			
Plate6	Top / Bottom Plate	SA-516 70	15.88	3,300.6	190.5	78.2	2			
Plate7	Tubesheet / Plugsheet	SA-516 70	25.4	3,300.6	374.65	246	2			
Plate8	Tubesheet / Plugsheet	SA-516 70	25.4	3,300.6	463.55	304.4	2			

	Tubes						
Item #	Туре	Material	Thk [mm]	Dia [mm]	Length [mm]	Weight [kg] (ea)	Qty
Tube1	Tube	SA-179 Smls Tube	3.18	25.4	2,590.8	4.5	225

Inlet/Outlet Header

ASME Section VIII Division 1, 2021 Edition Metric							
Co	omponent	Appendix 13 Plug Header					
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
I	nternal	6.89	343.33	-28.89			
E	External	1.03	343.33	-20.09			
	Dim	ensions					
Tubesheet	Inside Length, h		431.8 mm				
Tubesheet	Thickness, t ₂		25.4 mm				
Ton/Dottom	Inside Length, H		190.5 mm				
Top/Bottom	Thickness, t ₁		15.88 mm				
End Plat	e Thickness, t ₅		12 mm				
Le	ength, L _v		3,276.6 mm				
Corrosion	Inner		0 mm				
Corrosion	Outer		0 mm				
	1	ubes					
Numb	er of Passes	2					
	Pitch	76.2 mm					
Lay	out Angle	Rotated Triangular (60°)					
	Quantity	225					
	OD		25.4 mm				
Wall	Thickness		3.18 mm				
Min W	all Thickness	2.78 mm					
Distance E	Between Headers	2,540 mm					
Corrosion	Inner		0 mm				
	Outer	0 mm					
	Sta	y Plate					
	ber of Stays		1				
Thi	ckness, t ₃	12 mm					
Maximum Con	partment Dimension	203.2 mm					
Stay to End Plate	e Weld Full Penetration		 ✓ 				

Joint Efficiency		
Tubesheet/Plugsheet mid-plate	1	
Top/Bottom mid-plate	1	
Corner	1	
End	1	
Stay	1	

Ligament Efficiency				
Diameter, c				
Tubesheet	25.65 mm			
Plugsheet	26.3 mm			

Material Summary									
Plate	Material	Impact Tested Normalized		Fine Grain Practice	РѠНТ				
Tubesheet/Plugsheet	SA-516 70	×	×	×	~				
Top/Bottom	SA-516 70	×	×	×	~				
End	SA-516 70	×	×	×	~				
Stay	SA-516 70	×	×	×	~				
Tubes	SA-179 Smls Tube	×	×	×	×				

Results Summary									
	t t _d MAWP MAP (mm) (bar)								
Tubesheet	25.4	10.91	34.26	36.65	-48				
Plugsheet	25.4	10.98	33.82	36.18	-48				
Top/Bottom	15.88	8.23	24.38	26.08	-40.25				
Stay	12	1.12	74.19	79.37	-105				

				Stress	Summ	ary						
		S _m (kg _f / cm ²)	S _{m,allow} (kg _f / cm ²)	(S _b) (k) cn	g _f /	(k	ь)q g _f / n ²)	(k) _{N,M} g _f / n ²)	(k	т)q g _f / n ²)	S _{T,allow} (kg _f / cm ²)
				Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer	
Tubesheet	Oper Hot & Corr	<u>40</u>	1,315	<u>357</u>	<u>-357</u>	<u>201</u>	<u>-201</u>	<u>397</u>	<u>-318</u>	<u>241</u>	<u>-161</u>	1,973
Tubesneet	Shop Test New	<u>174</u>	2,404	<u>1,564</u>	<u>-1,564</u>	<u>879</u>	<u>-879</u>	<u>1,738</u>	<u>-1,390</u>	<u>1,053</u>	<u>-705</u>	3,607
Plugsheet	Oper Hot & Corr	<u>40</u>	1,315	<u>362</u>	<u>-362</u>	<u>201</u>	<u>-201</u>	<u>402</u>	<u>-322</u>	<u>241</u>	<u>-161</u>	1,973
Flugsheet	Shop Test New	<u>176</u>	2,404	<u>1,584</u>	<u>-1,584</u>	<u>879</u>	<u>-879</u>	<u>1,760</u>	<u>-1,408</u>	<u>1,055</u>	<u>-703</u>	3,607
Top/Bottom	Oper Hot & Corr	<u>44</u>	1,315	<u>-245</u>	<u>245</u>	<u>514</u>	<u>-514</u>	<u>-201</u>	<u>289</u>	<u>558</u>	<u>-470</u>	1,973
тор/воцот	Shop Test New	<u>192</u>	2,404	<u>-1,072</u>	<u>1,072</u>	<u>2,250</u>	<u>-2,250</u>	<u>-881</u>	<u>1,264</u>	<u>2,442</u>	<u>-2,059</u>	3,607
Stav	Oper Hot & Corr	<u>122</u>	1,315	-	-	-	-		12	22		1,315
Stay	Shop Test New	<u>535</u>	2,404	-	-	-	-		<u>5</u>	<u>35</u>		2,404

UCS-66 Material Toughness Requirements Tubesheet				
Governing thickness, t _g =	15.88 mm			
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C			
Stress ratio per UCS-66(b)(1)(b) $= rac{22.26}{36.65} =$	0.6072			
Reduction in MDMT, T _R from Fig UCS-66.1M =	22°C			
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C			
$MDMT = \max \left[MDMT - T_R - T_{PWHT} ight. , -48 ight] = \max \left[-15.05 - 22 - 17, -48 ight] =$	-48°C			
Material is exempt from impact testing at the Design MDMT of -28.89°C.				

UCS-66 Material Toughness Requirements Plugsheet					
Governing thickness, t _g =	15.88 mm				
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C				
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{36.18}$ =	0.6151				
Reduction in MDMT, T _R from Fig UCS-66.1M =	21.6°C				
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C				
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 21.6 - 17, -48] =$	-48°C				
Material is exempt from impact testing at the Design MDMT of -28.89°C.					

UCS-66 Material Toughness Requirements Top/Bottom		
Governing thickness, t _g =	15.88 mm	
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C	
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{26.08}$ =	0.8534	
Reduction in MDMT, T _R from Fig UCS-66.1M =	8.2°C	
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C	
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 8.2 - 17, -48] =$	-40.25°C	
Material is exempt from impact testing at the Design MDMT of -28.89°C.		

UCS-66 Material Toughness Requirements Stay		
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{79.37}$ =	0.2804	
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C	
Material is exempt from impact testing at the Design MDMT of -28.89°C.		

Vessel Paramet	ers
$\text{Aspect Ratio} = \frac{L_v}{h}$	
$\text{Aspect Ratio} = \frac{L_v}{H}$	
$I_1=\frac{t_1^3}{12}$	
$I_2 = rac{t_2^3}{12}$	
$lpha = rac{H}{h}$	
$K=igg(rac{I_2}{I_1}igg)lpha$	
New / Corrode	ed
Aspect Ratio $=$ $\frac{3,276.6}{203.2} =$	16.125
Aspect Ratio $=$ $\frac{3,276.6}{190.5}$ $=$	17.2
$I_1 = {15.88 \over 12}^3 =$	333.3957 mm ³
$I_2=rac{25.4}{12}^3=$	1,365.5887 mm ³
$ \alpha = \frac{190.5}{203.2} = $	0.9375
$K = \left(\frac{1,365.5887}{333.3957}\right) \cdot 0.9375 =$	3.84

Tubesheet
$e_m = e_b = rac{p-d}{p}$
$S_{ml} = P rac{H}{2t_2 E_m}$
$egin{aligned} & \left(S_{b} ight)_{Mi} = Ph^{2}rac{c_{i}}{12I_{2}E_{b}}\left[rac{1+K\left(3-lpha^{2} ight)}{1+2K} ight] \end{aligned}$
$\left(S_{b} ight)_{Mo} = Ph^{2}rac{c_{o}}{12I_{2}E_{b}}\left[rac{1+K\left(3-lpha^{2} ight)}{1+2K} ight]$
$egin{aligned} & (S_{bl})_{Qi} = Ph^2 rac{c_i}{12 I_2 E_b} rac{1+2lpha^2 K}{1+2 K} \end{aligned}$

$(S_{bl})_{Qo} = P h^2 rac{c_o}{12 I_2 E_b} rac{1+2 lpha^2 K}{1+2 K}$		
$\boxed{\left(S_T\right)_{Mi}=S_{ml}+\left(S_b\right)_{Mi}}$		
$\left(S_T ight)_{Mo}=S_{ml}+\left(S_b ight)_{Mo}$		
$(S_{Tl})_{Qi} = S_{ml} + (S_{ll})_{Qi}$		
$(S_{Tl})_{Qo} = S_{ml} + (S_{bl})_{Qo}$		
Ligament Efficiency	8	
$e_m = e_b = \; rac{76.2 - 25.65}{76.2} \; = \;$	0.6634	
Plate Parameters	1	
New / Corroded		
$c_i = rac{25.4 - 0 - 0}{2} =$	12.7 mm	
$c_o = -rac{25.4{-}0{-}0}{2} =$	-12.7 mm	
Operating Hot & Corroded	1	
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$S_{ml} = 6.89 \cdot 1.02 \cdot rac{190.5}{2 \cdot 25.4 \cdot 0.6634} =$	<u>39.743</u>	1,315.434
$\boxed{\left(S_{b}\right)_{Mi}=6.89\cdot1.02\cdot203.2^{\ 2}\cdot\frac{12.7}{12\cdot1,365.5887\cdot0.6634}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{\ 2}\right)}{1+2\cdot3.84}\right]=}$	<u>357.311</u>	1,973.151
$\boxed{\left(S_{b}\right)_{Mo} = 6.89 \cdot 1.02 \cdot 203.2^{\ 2} \cdot \ - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.84 \cdot \left(3 - 0.9375^{\ 2}\right)}{1 + 2 \cdot 3.84}\right] = 12.7}$	<u>-357.311</u>	1,973.151
$(S_{tl})_{Q_{t}} = 6.89 \cdot 1.02 \cdot 203.2 \ ^{2} \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375 \ ^{2} \cdot 3.84}{1 + 2 \cdot 3.84} =$	<u>200.877</u>	1,973.151
$(S_{ll})_{Q_0} = 6.89 \cdot 1.02 \cdot 203.2 \ ^2 \cdot \ - \ rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375 \ ^2 \cdot 3.84}{1 + 2 \cdot 3.84} =$	<u>-200.877</u>	1,973.151
$(S_T)_{Mi} = 39.743 + 357.311 =$	<u>397.054</u>	1,973.151
$\left(S_{T} ight)_{Mo}=39.743+-357.311=$	<u>-317.568</u>	1,973.151
$(S_{Tl})_{Qi} = 39.743 + 200.877 =$	<u>240.62</u>	1,973.151
$(S_{Tl})_{Qo} = 39.743 + -200.877 =$	<u>-161.134</u>	1,973.151
Shop Test New		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$S_{ml} = 30.17 \cdot 1.02 \cdot rac{190.5}{2 \cdot 25.4 \cdot 0.6634} =$	<u>173.926</u>	2,404.491
$\left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{-2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{-2})}{1 + 2 \cdot 3.84} \right] =$	<u>1,563.679</u>	3,606.736
$\left[(S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 203.2^{\ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{\ 2})}{1 + 2 \cdot 3.84} \right] = 0.0000000000000000000000000000000000$	-1,563.679	3,606.736

$(S_{ll})_{Ql} = 30.17 \cdot 1.02 \cdot 203.2 \ ^2 \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375 \ ^2 \cdot 3.84}{1 + 2 \cdot 3.84} =$	<u>879.087</u>	3,606.736
$\left[(S_{bl})_{Qo} = 30.17 \cdot 1.02 \cdot 203.2 \ ^2 \cdot \ - \ rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375 \ ^2 \cdot 3.84}{1 + 2 \cdot 3.84} = ight.$	<u>-879.087</u>	3,606.736
$(S_T)_{Mi} = 173.926 + 1{,}563.679 =$	<u>1,737.605</u>	3,606.736
$(S_T)_{Mo} = 173.926 + -1,563.679 =$	<u>-1,389.753</u>	3,606.736
$(S_{Tl})_{Ql} = 173.926 + 879.087 =$	<u>1,053.013</u>	3,606.736
$(S_{Tl})_{Qo} = 173.926 + -879.087 =$	<u>-705.161</u>	3,606.736

Plugsheet		
$e_m = e_b = rac{p-d}{p}$		
$S_{ml} = P rac{H}{2t_2 E_m}$		
$(S_b)_{Mi} = Ph^2 rac{c_i}{12I_2E_b} \left[rac{1+K(3-lpha^2)}{1+2K} ight]$		
$\left(S_{b} ight)_{Mo}=Ph^{2}rac{c_{o}}{12I_{2}E_{b}}\left[rac{1+K\left(3-lpha^{2} ight)}{1+2K} ight]$		
$(S_{ll})_{Ql} = Ph^2 rac{c_i}{12 I_2 E_b} rac{1+2lpha^2 K}{1+2K}$		
$(S_{ld})_{Q_0} = Ph^2 rac{c_o}{12I_2E_b} rac{1+2lpha^2K}{1+2K}$		
$\left(S_{T} ight)_{Mi}=S_{ml}+\left(S_{b} ight)_{Mi}$		
$\left(S_T ight)_{Mo}=S_{ml}+\left(S_b ight)_{Mo}$		
$(S_{Tl})_{Qi} = S_{ml} + (S_{ll})_{Qi}$		
$(S_{Tl})_{Qo} = S_{ml} + (S_{ll})_{Qo}$		
Ligament Efficiency		
$e_m = e_b = rac{76.2 - 26.3}{76.2} =$	0.6549	
Plate Parameters	•	
New / Corroded	1	
$c_i = \frac{25.4 - 0 - 0}{2} =$	12.7 mm	
$c_o = - {25.4 - 0 - 0 \over 2} =$	-12.7 mm	
Operating Hot & Corroded		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$S_{ml} = 6.89 \cdot 1.02 \cdot rac{190.5}{2 \cdot 25.4 \cdot 0.6549} =$	<u>40.261</u>	1,315.434

$\left(\left(S_b \right)_{Mi} = 6.89 \cdot 1.02 \cdot 203.2^{\ 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot \left(3 - 0.9375^{\ 2} \right)}{1 + 2 \cdot 3.84} \right] = 0.000 + 0.0000 + 0.0000 + 0.000 + 0.000 + 0.000 + 0.000 + 0.0$	<u>361.965</u>	1,973.151
$\left[\left(S_{b}\right)_{Mo}=6.89\cdot1.02\cdot203.2^{2}\cdot\ -\ \frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{-2}\right)}{1+2\cdot3.84}\right]=$	<u>-361.965</u>	1,973.151
$(S_{li})_{Qi} = 6.89 \cdot 1.02 \cdot 203.2 \ ^2 \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375 \ ^2 \cdot 3.84}{1 + 2 \cdot 3.84} =$	<u>200.877</u>	1,973.151
$(S_{bl})_{Qo} = 6.89 \cdot 1.02 \cdot 203.2 \ ^2 \cdot \ - \ rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375 \ ^2 \cdot 3.84}{1 + 2 \cdot 3.84} =$	<u>-200.877</u>	1,973.151
$\left(S_{T} ight)_{Mi}=40.261+361.965=$	<u>402.226</u>	1,973.151
$\left(S_{T} ight)_{Mo}=40.261+-361.965=$	<u>-321.704</u>	1,973.151
$(S_{Tl})_{Qi} = 40.261 + 200.877 =$	<u>241.138</u>	1,973.151
$(S_{Tl})_{Qo} = 40.261 + -200.877 =$	<u>-160.616</u>	1,973.151
Shop Test New	4	
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
190.5		
$S_{ml} = 30.17 \cdot 1.02 \cdot rac{190.5}{2 \cdot 25.4 \cdot 0.6549} =$	<u>176.192</u>	2,404.491
$S_{ml} = 30.17 \cdot 1.02 \cdot \frac{102}{2 \cdot 25.4 \cdot 0.6549} = \left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^2 \cdot \frac{12.7}{12 \cdot 1.365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^2)}{1 + 2 \cdot 3.84} \right] = \left[\frac{1 + 3.84 \cdot (3 - 0.9375^2)}{1 + 2 \cdot 3.84} \right]$	<u>176.192</u> <u>1.584.047</u>	2,404.491 3,606.736
	<u>1.584.047</u>	3,606.736
$\boxed{\left(S_b\right)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{-2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot \left(3 - 0.9375^{-2}\right)}{1 + 2 \cdot 3.84}\right] = $	<u>1.584.047</u>	3,606.736
$ \left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^2)}{1 + 2 \cdot 3.84} \right] = \\ \left[(S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 203.2^2 \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^2)}{1 + 2 \cdot 3.84} \right] = \\ \end{array} \right] $	<u>1.584.047</u> - <u>1.584.047</u>	3,606.736 3,606.736
$\begin{split} & \left(S_b\right)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2\ ^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot \left(3 - 0.9375\ ^2\right)}{1 + 2 \cdot 3.84}\right] = \\ & \left(S_b\right)_{Mo} = 30.17 \cdot 1.02 \cdot 203.2\ ^2 \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot \left(3 - 0.9375\ ^2\right)}{1 + 2 \cdot 3.84}\right] = \\ & \left(S_{\mathcal{U}}\right)_{Qi} = 30.17 \cdot 1.02 \cdot 203.2\ ^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375\ ^2 \cdot 3.84}{1 + 2 \cdot 3.84} = \end{split}$	1.584.047 -1.584.047 879.087	3,606.736 3,606.736 3,606.736
$\begin{split} & \left(S_{b}\right)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84}\right] = \\ & \left(S_{b}\right)_{Mo} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84}\right] = \\ & \left(S_{ll}\right)_{Qi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{2} \cdot 3.84}{1 + 2 \cdot 3.84} = \\ & \left(S_{ll}\right)_{Qo} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{2} \cdot 3.84}{1 + 2 \cdot 3.84} = \\ \end{split}$	1.584.047 -1.584.047 879.087 -879.087	3,606.736 3,606.736 3,606.736 3,606.736
$\begin{split} & \left(S_{b}\right)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84}\right] = \\ & \left(S_{b}\right)_{Mo} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84}\right] = \\ & \left(S_{li}\right)_{Qi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{2} \cdot 3.84}{1 + 2 \cdot 3.84} = \\ & \left(S_{li}\right)_{Qo} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{2} \cdot 3.84}{1 + 2 \cdot 3.84} = \\ & \left(S_{li}\right)_{Qi} = 176.192 + 1,584.047 = \end{split}$	1.584.047 -1.584.047 879.087 -879.087 1,760.239	3,606.736 3,606.736 3,606.736 3,606.736

Top/Bottom
$egin{aligned} S_{ms} &= P rac{h}{4t_1 E_m} iggg\{ 4 - \left[rac{2 + K \left(5 - lpha^2 ight)}{1 + 2K} ight] iggr\} \end{aligned}$
$igg[(S_b)_{Ni} = P rac{c_i}{24 I_1 E_b} igg[- 3 H^2 + 2 h^2 rac{1 + 2 lpha^2 K}{1 + 2 K} igg]$
$igg[(S_b)_{No} = P rac{c_o}{24 I_1 E_b} igg[-3 H^2 + 2 h^2 rac{1+2 lpha^2 K}{1+2 K} igg]$
$(S_{bs})_{Qi} = Ph^2 rac{c_i}{12I_1E_b} rac{1+2lpha^2K}{1+2K}$

$(S_{bs})_{Qo}=Ph^2rac{c_o}{12I_1E_b}rac{1+2lpha^2K}{1+2K}$		
$(S_T)_{Ni} = S_{ms} + (S_b)_{Ni}$		
$(S_T)_{No} = S_{ms} + (S_b)_{No}$		
$(S_{Ts})_{Qi} = S_{ms} + (S_{bs})_{Qi}$		
$(S_{Ts})_{Qo} = S_{ms} + (S_{bs})_{Qo}$		
Plate Parameters		
New / Corroded		
$c_i = rac{15.88 - 0 - 0}{2} =$	7.94 mm	
$c_o = - rac{15.88 - 0 - 0}{2} =$	-7.94 mm	
Operating Hot & Corroded	1	
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\left S_{ms} = 6.89 \cdot 1.02 \cdot \frac{203.2}{4 \cdot 15.88 \cdot 1} \cdot \left\{4 - \left[\frac{2 + 3.84 \cdot \left(5 - 0.9375^{-2}\right)}{1 + 2 \cdot 3.84}\right]\right\} =$	<u>43.791</u>	1,315.434
$\left[(S_b)_{Ni} = 6.89 \cdot 1.02 \cdot \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 190.5^{-2} + 2 \cdot 203.2^{-2} \cdot \frac{1 + 2 \cdot 0.9375^{-2} \cdot 3.84}{1 + 2 \cdot 3.84}\right] =$	<u>-245.07</u>	1,973.151
$\left[(S_b)_{No} = 6.89 \cdot 1.02 \cdot -\frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 190.5^{-2} + 2 \cdot 203.2^{-2} \cdot \frac{1 + 2 \cdot 0.9375^{-2} \cdot 3.84}{1 + 2 \cdot 3.84}\right] =$	<u>245.07</u>	1,973.151
$(S_{bs})_{Qi}= 6.89 \cdot 1.02 \cdot 203.2^2 \cdot rac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375^2 \cdot 3.84}{1 + 2 \cdot 3.84} =$	<u>514.245</u>	1,973.151
$(S_{bs})_{Qo} = 6.89 \cdot 1.02 \cdot 203.2 \ ^2 \cdot - rac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375 \ ^2 \cdot 3.84}{1 + 2 \cdot 3.84} =$	<u>-514.245</u>	1,973.151
$(S_T)_{Ni} = 43.791 + - 245.07 =$	<u>-201.279</u>	1,973.151
$(S_T)_{No} = 43.791 + 245.07 =$	<u>288.861</u>	1,973.151
$(S_{Ts})_{Qi} = 43.791 + 514.245 =$	<u>558.036</u>	1,973.151
$(S_{Ts})_{Qo} = 43.791 + -514.245 =$	<u>-470.454</u>	1,973.151
Shop Test New	1	1
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\left S_{ms} = 30.17 \cdot 1.02 \cdot \frac{203.2}{4 \cdot 15.88 \cdot 1} \cdot \left\{4 - \left[\frac{2 + 3.84 \cdot (5 - 0.9375^{-2})}{1 + 2 \cdot 3.84}\right]\right\} =$	<u>191.641</u>	2,404.491
$\left(S_{b}\right)_{Ni} = 30.17 \cdot 1.02 \cdot \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 190.5^{-2} + 2 \cdot 203.2^{-2} \cdot \frac{1 + 2 \cdot 0.9375^{-2} \cdot 3.84}{1 + 2 \cdot 3.84}\right] =$	<u>-1,072.486</u>	3,606.736
$(S_b)_{No} = 30.17 \cdot 1.02 \cdot - \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 190.5 \ ^2 + 2 \cdot 203.2 \ ^2 \cdot \frac{1 + 2 \cdot 0.9375 \ ^2 \cdot 3.84}{1 + 2 \cdot 3.84} \right] =$	<u>1,072.486</u>	3,606.736
$(S_{bs})_{Qi} = 30.17 \cdot 1.02 \cdot 203.2 \ ^2 \cdot rac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375 \ ^2 \cdot 3.84}{1 + 2 \cdot 3.84} =$	<u>2,250.462</u>	3,606.736

$\left[(S_{bs})_{Qo}=30.17\cdot 1.02\cdot 203.2^{2}\cdot-rac{7.94}{12\cdot 333.3957\cdot 1}\cdotrac{1+2\cdot 0.9375^{2}\cdot3.84}{1+2\cdot 3.84}=$	-2,250.462	3,606.736
$(S_T)_{Ni} = 191.641 + - 1,\! 072.486 =$	<u>-880.845</u>	3,606.736
$(S_T)_{No} = 191.641 + 1,072.486 =$	<u>1,264.127</u>	3,606.736
$(S_{Ts})_{Qi} \ = 191.641 + 2,\!250.462 =$	<u>2,442.103</u>	3,606.736
$(S_{Ts})_{Qo} = 191.641 + -2,\!250.462 =$	<u>-2,058.821</u>	3,606.736

Stay		
$egin{aligned} S_{mst} &= P rac{h}{2t_3 E_{st}} \left[rac{2 + K \left(5 - lpha^2 ight)}{1 + 2K} ight] \end{aligned}$		
Operating Hot & Corroded		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$egin{aligned} S_{mst} &= 6.89 \cdot 1.02 \cdot rac{203.2}{2 \cdot 12 \cdot 1} \cdot \left[rac{2 + 3.84 \cdot \left(5 - 0.9375 \ ^2 ight)}{1 + 2 \cdot 3.84} ight] = \end{aligned}$	<u>122.242</u>	1,315.434
Shop Test New		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\left[S_{mst} = 30.17 \cdot 1.02 \cdot \frac{203.2}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.84 \cdot (5 - 0.9375^{-2})}{1 + 2 \cdot 3.84}\right] = \right]$	<u>534.961</u>	2,404.491

Tubes

	ASME Section VIII Division 1, 2021 Edition Metric						
Com	ponent	Tube					
Material		SA-179 Sr	mls Tube (II-D Metric	p. 8, In. 11)			
Impact Tested	Normalized	Fine Grain Practice	PW	нт			
No	No	No	No)			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
Internal		6.89	343.33	-28.89			
External		1.03	343.33	-20.09			
Dimensions							
Outer	Diameter	25.4 mm					
Le	ngth	2,590.8 mm					
Tube Nomir	nal Thickness	3.18 mm					
Tube Minimu	um Thickness ¹	2.78 mm					
Corrosion	Inner	0 mm					
Conosion	Outer	0 mm					
		Weight and Ca	apacity				
		Weight (kg)		Capacity (liters)			
N	lew		0.74				
Corroded		4.5 0.74					

¹Tube minimum thickness = nominal thickness times tube tolerance factor of 0.875.

Results Summary	
Governing condition	External pressure
Minimum thickness per UG-16	Exempt per UG-16(b)(2)
Design thickness due to internal pressure (t)	<u>0.1 mm</u>
Design thickness due to external pressure (t_e)	<u>0.22 mm</u>
Maximum allowable working pressure (MAWP)	212.4 bar
Maximum allowable pressure (MAP)	<u>221.51 bar</u>
Maximum allowable external pressure (MAEP)	<u>114.25 bar</u>
Rated MDMT	-105 °C

UCS-66 Material Toughness Requirements						
Impact test exempt per UCS-66(d) (NPS 4 or smaller pipe) =	-105°C					
Material is exempt from impact testing at the Design MDMT of -2	28.89°C.					

Design thickness, (at 343.33 °C) Appendix 1-1

$$t = \frac{P \cdot R_o}{S \cdot E + 0.40 \cdot P} + \text{Corrosion} = \frac{6.89 \cdot 12.7}{886 \cdot 1.00 + 0.40 \cdot 6.89} + 0 = \underline{0.1} \text{ mm}$$

Maximum allowable working pressure, (at 343.33 °C) Appendix 1-1

$$P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} - P_s = \frac{886 \cdot 1.00 \cdot (3.18 \cdot 0.875)}{12.7 - 0.40 \cdot (3.18 \cdot 0.875)} - 0 = \underline{212.4} \text{ bar}$$

Maximum allowable pressure, (at 21.11 °C) Appendix 1-1

$$P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} = \frac{924 \cdot 1.00 \cdot (3.18 \cdot 0.875)}{12.7 - 0.40 \cdot (3.18 \cdot 0.875)} = \frac{221.51}{221.51} \text{ bar}$$

External Pressure, (Corroded & at 343.33 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{2,590.8}{25.4} = 50.0000$$
$$\frac{D_o}{t} = \frac{25.4}{0.22} = 117.3116$$

From table G: A = 0.000083

From table CS-1 Metric: $B = 92.7809 \text{ kg/cm}^2(90.99 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 90.99}{3 \cdot (25.4/0.22)} = 1.03 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1.03$ bar

 $t_a = t + \text{Corrosion} = 0.22 + 0 = \underline{0.22} \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 343.33 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{2,590.8}{25.4} = 50.0000$$
$$\frac{D_o}{t} = \frac{25.4}{3.18 \cdot 0.875} = 9.1429$$

From table G: A = 0.013800

From table CS-1 Metric: $B = 757.9092 \text{ kg/cm}^2 (743.2537 \text{ bar})$

$$\begin{split} S_y &= 2 \cdot B_{sy} = 2 \cdot 806.4497 = 1,612.9 \quad \text{kg/cm}^2 \\ S_1 &= 2 \cdot S_e = 2 \cdot 903.5 = 1,806.9 \quad \text{kg/cm}^2 \\ S_2 &= 0.90 \cdot S_y = 0.90 \cdot 1,612.9 = 1,451.6 \quad \text{kg/cm}^2 \\ S &= \min \left(S_1, S_2 \right) = \min \left(1,806.9,1,451.6 \right) = 1,451.6 \quad \text{kg/cm}^2 \end{split}$$

$$P_{a1} = \left[\frac{2.167}{D_o/t} - 0.08333\right] \cdot B = \left[\frac{2.167}{9.1429} - 0.08333\right] \cdot 757.9 = 114.25 \text{ bar}$$

$$P_{a2} = \left(rac{2 \cdot S}{D_o/t}
ight) \cdot \left[1 - rac{1}{D_o/t}
ight] = \left(2 \cdot rac{1,451.6}{9.1429}
ight) \cdot \left[1 - rac{1}{9.1429}
ight] = 277.34 \;\; \mathrm{bar}$$

Maximum Allowable External Pressure = min(P_{a1}, P_{a2}) = $\underline{114.25}$ bar

End Plates for Inlet/Outlet Header

	ASME Section VIII Division 1, 2021 Edition Metric							
Component		Appendix 13 End Plate						
Ма	terial	SA-516 7	0 (II-D Metric p. 20, I	n. 45)				
Impact Tested	Normalized	Fine Grain Practice						
No	No	No	Yes					
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)				
Internal		6.89	343.33	-28.89				
External		1.03	343.33	-20.09				
		Static Liquid I	Head					
Cor	dition	P _s (bar)	H _s (mm)	SG				
Test h	orizontal	0.04	0.04 431.8					
		Dimension	s					
Short Insid	de Length (d)	190.5 mm						
Long Insid	le Length (D)	203.2 mm						
Nominal	Thickness	12 mm						
Corrosion	Inner		0 mm					
	Outer	0 mm						
Joint E	fficiency	1						

Results Summary	
Governing condition	internal pressure
Minimum thickness per UG-16	1.5 mm + 0 mm = 1.5 mm
Design thickness due to internal pressure (t)	<u>6.68</u> mm
Design thickness due to external pressure (t_e)	<u>2.59</u> mm
Maximum allowable working pressure (MAWP)	<u>22.26</u> bar
Maximum allowable pressure (MAP)	<u>23.81</u> bar
Maximum allowable external pressure (MAEP)	<u>22.26</u> bar
Rated MDMT	-44.01°C

UCS-66 Material Toughness Requirements						
Governing thickness, t _g =	12 mm					
Exemption temperature from Fig UCS-66M Curve B =	-23.31°C					
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{23.81}$ =	0.9348					
Reduction in MDMT, T _R from Fig UCS-66.1M =	3.7°C					
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C					
$MDMT = \max \left[MDMT - T_R - T_{PWHT} ight., -48 ight] = \max \left[-23.31 - 3.7 - 17, -48 ight] =$	-44.01°C					
Material is exempt from impact testing at the Design MDMT of -28.89°C.						

Factor C from Appendix 13-4(f)

Factor C = 0.2

Factor Z

$$Z = \min\left[3.4 - \frac{2.4 \cdot d}{D}, 2.5\right] = \min\left[3.4 - \frac{2.4 \cdot d}{203.2}, 2.5\right] = 1.15$$

Design thickness, (at 343.33 °C) UG-34(c)(3)

$$t = d \cdot \sqrt{\frac{Z \cdot C \cdot P \cdot 1.02}{S \cdot E}} + \text{Corrosion} = 190.5 \cdot \sqrt{\frac{1.15 \cdot 0.2 \cdot 6.89 \cdot 1.02}{1,315.434 \cdot 1}} + 0 = \underline{6.68} \text{ mm}$$

Maximum allowable working pressure, (at 343.33 °C)

$$MAWP = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 - P_s = \left(\frac{\frac{1,315.434}{1.02} \cdot 1}{0.2 \cdot 1.15}\right) \cdot \left(\frac{12}{190.5}\right)^2 - 0 = \underline{22.26} \text{ bar}$$

Maximum allowable pressure, (At 21.11 °C)

$$Z = \min\left[3.4 - \frac{2.4 \cdot d}{D}, 2.5\right] = \min\left[3.4 - \frac{2.4 \cdot d}{203.2}, 2.5\right] = 1.15$$

$$MAP = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{\frac{1,407.208}{1.02} \cdot 1}{0.2 \cdot 1.15}\right) \cdot \left(\frac{12}{190.5}\right)^2 = \underline{23.81} \text{ bar}$$

Design thickness for external pressure, (at 343.33 °C) UG-34(c)(3)

$$t = d \cdot \sqrt{\frac{Z \cdot C \cdot P_e \cdot 1.02}{S \cdot E}} + \text{Corrosion} = 190.5 \cdot \sqrt{\frac{1.15 \cdot 0.2 \cdot 1.03 \cdot 1.02}{1,315.434 \cdot 1}} + 0 = \underline{2.59} \text{ mm}$$

Maximum allowable external pressure, (At 343.33 °C)

MAEP =
$$\left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{\frac{1,315.434}{1.02} \cdot 1}{0.2 \cdot 1.15}\right) \cdot \left(\frac{12}{190.5}\right)^2 = \frac{22.26}{22.26}$$
 bar

Return Header

	ASME Section VIII Divi	sion 1, 2021 Ed	ition Metric			
Co	omponent	Appendix 13 Plug Header				
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
	Internal	6.89	343.33	-28.89		
E	External	1.03	343.33	-20.09		
	Dim	ensions				
Tubesheet	Inside Length, h		342.9 mm			
Tubesheet	Thickness, t ₂		25.4 mm			
Tax (Datta	Inside Length, H		152.4 mm			
Top/Bottom	Thickness, t ₁		15.88 mm			
End Plat	te Thickness, t ₅		12 mm			
Le	ength, L _v		3,276.6 mm			
Corrosion	Inner	0 mm				
Corrosion	Outer	0 mm				
	1	ubes				
Numb	er of Passes		2			
	Pitch	76.2 mm				
Lay	vout Angle	Rotated Triangular (60°)				
	Quantity	225				
	OD	25.4 mm				
Wal	Thickness	3.18 mm				
Min W	all Thickness	2.78 mm				
Distance I	Between Headers		2,540 mm			
Corrosion	Inner	0 mm				
Concision	Outer	0 mm				
	Sta	y Plate				
	ber of Stays		1			
Thi	ckness, t ₃	12 mm				
Maximum Con	npartment Dimension	165.1 mm				
Stay to End Plat	e Weld Full Penetration		 ✓ 			

Joint Efficiency				
Tubesheet/Plugsheet mid-plate	1			
Top/Bottom mid-plate	1			
Corner	1			
End	1			
Stay	1			

Ligament Efficiency						
Diameter, d						
Tubesheet	25.65 mm					
Plugsheet	26.3 mm					

Material Summary									
Plate	e Material Ir T		Normalized	Fine Grain Practice	РѠҤТ				
Tubesheet/Plugsheet	SA-516 70	×	×	×	~				
Top/Bottom	SA-516 70	×	×	×	~				
End	SA-516 70	×	×	×	~				
Stay	SA-516 70	×	×	×	~				
Tubes	SA-179 Smls Tube	×	×	×	×				

Results Summary									
t t _d MAWP MAP MDMT (mm) (mm) (bar) (bar) (°C)									
Tubesheet	25.4	8.84	50.33	53.84	-48				
Plugsheet	25.4	8.9	49.68	53.15	-48				
Top/Bottom	15.88	6.58	37.18	39.77	-48				
Stay	12	0.91	90.8	97.13	-105				

Stress Summary												
		S _m (kg _f / cm ²)	S _{m,allow} (kg _f / cm ²)	(k) _{N,M} 9 _f / n ²)	(k	b)Q g _f / n ²)	(k) _{N,M} 9 _f / n ²)	(k	т)q g _f / n ²)	S _{T,allow} (kg _f / cm ²)
				Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer	ciii)
Tubesheet	Oper Hot & Corr	<u>32</u>	1,315	<u>239</u>	<u>-239</u>	<u>129</u>	<u>-129</u>	<u>270</u>	<u>-207</u>	<u>161</u>	<u>-97</u>	1,973
Tubesheet	Shop Test New	<u>139</u>	2,404	<u>1,044</u>	<u>-1,044</u>	<u>565</u>	<u>-565</u>	<u>1,183</u>	<u>-905</u>	<u>704</u>	<u>-426</u>	3,607
Plugsheet	Oper Hot & Corr	<u>32</u>	1,315	<u>242</u>	<u>-242</u>	<u>129</u>	<u>-129</u>	<u>274</u>	<u>-209</u>	<u>161</u>	<u>-97</u>	1,973
Flugsheet	Shop Test New	<u>141</u>	2,404	<u>1,057</u>	<u>-1,057</u>	<u>565</u>	<u>-565</u>	<u>1,198</u>	<u>-916</u>	<u>706</u>	<u>-424</u>	3,607
Top/Bottom	Oper Hot & Corr	<u>35</u>	1,315	<u>-155</u>	<u>155</u>	<u>331</u>	<u>-331</u>	<u>-120</u>	<u>191</u>	<u>366</u>	<u>-295</u>	1,973
тор/вошот	Shop Test New	<u>155</u>	2,404	<u>-680</u>	<u>680</u>	<u>1,447</u>	<u>-1,447</u>	<u>-525</u>	<u>835</u>	<u>1,601</u>	<u>-1,292</u>	3,607
Stay	Oper Hot & Corr	<u>100</u>	1,315	-	-	-	-		<u>1</u> (<u>)0</u>		1,315
Sidy	Shop Test New	<u>437</u>	2,404	-	-	-	-		<u>43</u>	37		2,404

UCS-66 Material Toughness Requirements Tubesheet	
Governing thickness, t _g =	15.88 mm
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{53.84}$ =	0.4134
Reduction in MDMT, T _R from Fig UCS-66.1M =	47.4°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 47.4 - 17, -48] =$	-48°C
Material is exempt from impact testing at the Design MDMT of -28.89°C.	

UCS-66 Material Toughness Requirements Plugsheet		
Governing thickness, t _g =	15.88 mm	
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C	
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{53.15}$ =	0.4187	
Reduction in MDMT, T _R from Fig UCS-66.1M =	45.9°C	
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C	
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 45.9 - 17, -48] =$	-48°C	
Material is exempt from impact testing at the Design MDMT of -28.89°C.		

UCS-66 Material Toughness Requirements Top/Bottom		
Governing thickness, t _g =	15.88 mm	
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C	
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{39.77}$ =	0.5596	
Reduction in MDMT, T _R from Fig UCS-66.1M =	26.2°C	
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C	
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 26.2 - 17, -48] =$	-48°C	
Material is exempt from impact testing at the Design MDMT of -28.89°C.		

UCS-66 Material Toughness Requirements Stay		
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{97.13}$ =	0.2291	
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C	
Material is exempt from impact testing at the Design MDMT of -28.89°C.		

Vessel Paramet	ers
$\text{Aspect Ratio} = \frac{L_v}{h}$	
$\text{Aspect Ratio} = \frac{L_v}{H}$	
$I_1 = rac{t_1^3}{12}$	
$I_2 = rac{t_2^3}{12}$	
$lpha = rac{H}{h}$	
$K = \left(rac{I_2}{I_1} ight)lpha$	
New / Corrode	ed
$Aspect Ratio = \frac{3,276.6}{165.1} =$	19.8462
$\text{Aspect Ratio} = \frac{3,276.6}{152.4} =$	21.5
$I_1 = {15.88 \over 12}^3 =$	333.3957 mm ³
$I_2 = rac{25.4}{12}^3 =$	1,365.5887 mm ³
$lpha = rac{152.4}{165.1} =$	0.9231
$K = \left(\frac{1,365.5887}{333.3957}\right) \cdot 0.9231 =$	3.7809

Tubesheet
$e_m = e_b = rac{p-d}{p}$
$S_{ml} = P rac{H}{2t_2 E_m}$
$\left[(S_b)_{Mi} = Ph^2 \frac{c_i}{12I_2E_b} \left[\frac{1 + K(3 - \alpha^2)}{1 + 2K} \right] \right]$
$\left[(S_b)_{Mo} = Ph^2 \frac{c_o}{12I_2 E_b} \left[\frac{1 + K \left(3 - \alpha^2 \right)}{1 + 2K} \right] \right]$
$(S_{m{k}})_{Q_i} = Ph^2 rac{c_i}{12I_2E_b} rac{1+2lpha^2K}{1+2K}$

$1 + 2\alpha^2 K$		
$(S_{bl})_{Qo} = Ph^2 rac{c_o}{12I_2 E_b} rac{1 + 2lpha^2 K}{1 + 2K}$		
$\left(S_T ight)_{Mi}=S_{ml}+\left(S_b ight)_{Mi}$		
$\left(S_T ight)_{Mo}=S_{ml}+\left(S_b ight)_{Mo}$		
$(S_{Tl})_{Qi} = S_{ml} + (S_{ll})_{Qi}$		
$(S_{Tl})_{Qo} = S_{ml} + (S_{ll})_{Qo}$		
Ligament Efficiency	1	
$e_m = e_b = rac{76.2 - 25.65}{76.2} =$	0.6634	
Plate Parameters		
New / Corroded		
$c_i = rac{25.4 - 0 - 0}{2} =$	12.7 mm	
$c_o = - {25.4 {-} 0 {-} 0 \over 2} =$	-12.7 mm	
Operating Hot & Corroded		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²
$S_{ml} = 6.89 \cdot 1.02 \cdot rac{152.4}{2 \cdot 25.4 \cdot 0.6634} =$	<u>31.795</u>	1,315.434
$\left(S_b\right)_{Mi} = 6.89 \cdot 1.02 \cdot 165.1 \ ^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231 \ ^2\right)}{1 + 2 \cdot 3.7809}\right] =$	<u>238.513</u>	1,973.15′
$\left(S_b\right)_{Mo} = 6.89 \cdot 1.02 \cdot 165.1 {}^2 \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231 {}^2\right)}{1 + 2 \cdot 3.7809}\right] =$	<u>-238.513</u>	1,973.15 ⁻
$(S_{ld})_{Ql} = 6.89 \cdot 1.02 \cdot 165.1^{\ 2} \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9231^{\ 2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	<u>129.119</u>	1,973.15 ⁻
$(S_{ll})_{Q_0} = 6.89 \cdot 1.02 \cdot 165.1 \ ^2 \cdot \ - \ rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9231 \ ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	<u>-129.119</u>	1,973.15 ⁻
$\left(S_{T} ight)_{Mi} = 31.795 + 238.513 =$	<u>270.307</u>	1,973.15 ⁻
$\left(S_{T} ight)_{Mo}=31.795+-238.513=$	<u>-206.718</u>	1,973.15 ⁻
$(S_{Tl})_{Qi} = 31.795 + 129.119 =$	<u>160.913</u>	1,973.15 ⁻
$(S_{Tl})_{Qo} = 31.795 + -129.119 =$	<u>-97.324</u>	1,973.15 ⁻
Shop Test New	7	
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²
$S_{ml} = 30.17 \cdot 1.02 \cdot rac{152.4}{2 \cdot 25.4 \cdot 0.6634} =$	<u>139.141</u>	2,404.49
$\left(S_b ight)_{Mi}=30.17\cdot 1.02\cdot 165.1^{-2}\cdot rac{12.7}{12\cdot 1,365.5887\cdot 0.6634}\cdot \left[rac{1+3.7809\cdot \left(3-0.9231^{-2} ight)}{1+2\cdot 3.7809} ight]=$	<u>1,043.789</u>	3,606.736
$(S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 165.1 \ ^2 \cdot - rac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[rac{1 + 3.7809 \cdot (3 - 0.9231 \ ^2)}{1 + 2 \cdot 3.7809} ight] =$	<u>-1,043.789</u>	3,606.736

$(S_{li})_{Qi} = 30.17 \cdot 1.02 \cdot 165.1^{-2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	<u>565.055</u>	3,606.736
$\left[(S_{\mathcal{U}})_{Q_{\mathcal{O}}} = 30.17 \cdot 1.02 \cdot 165.1^{-2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} = \right]$	<u>-565.055</u>	3,606.736
$(S_T)_{Mi} = 139.141 + 1,043.789 =$	<u>1,182.93</u>	3,606.736
$(S_T)_{Mo} = 139.141 + -1,043.789 =$	<u>-904.648</u>	3,606.736
$(S_{Tl})_{Qi} = 139.141 + 565.055 =$	<u>704.196</u>	3,606.736
$(S_{Tl})_{Qo} = 139.141 + -565.055 =$	<u>-425.914</u>	3,606.736

152.4	Plugsheet		
$\begin{split} & (S_{b})_{Mi} = Ph^{2} \frac{c_{i}}{12I_{2}E_{b}} \left[\frac{1+K(3-\alpha^{2})}{1+2K} \right] \\ & (S_{b})_{Mo} = Ph^{2} \frac{c_{o}}{12I_{2}E_{b}} \left[\frac{1+K(3-\alpha^{2})}{1+2K} \right] \\ & (S_{b})_{Mo} = Ph^{2} \frac{c_{o}}{12I_{2}E_{b}} \frac{1+2\alpha^{2}K}{1+2K} \\ & (S_{u})_{Qo} = Ph^{2} \frac{c_{o}}{12I_{2}E_{b}} \frac{1+2\alpha^{2}K}{1+2K} \\ & (S_{u})_{Qo} = Ph^{2} \frac{c_{o}}{12I_{2}E_{b}} \frac{1+2\alpha^{2}K}{1+2K} \\ & (S_{u})_{Qo} = S_{nl} + (S_{b})_{Mi} \\ & (S_{u})_{Mi} = S_{nl} + (S_{b})_{Mi} \\ & (S_{u})_{Qo} = S_{nl} + (S_{b})_{Mi} \\ & (S_{u})_{Qo} = S_{nl} + (S_{u})_{Qo} \\ & (S_{u})_{Qo} \\ & (S_{u})_{Qo} = S_{u} + (S_{u})_{Qo} \\ & (S_{u})_{QO} $	$e_m = e_b = rac{p-d}{p}$		
$\begin{aligned} (S_{b})_{M_{0}} &= Ph^{2} \frac{c_{o}}{12I_{2}E_{b}} \left[\frac{1 + K(3 - \alpha^{2})}{1 + 2K} \right] \\ (S_{u})_{Q_{b}} &= Ph^{2} \frac{c_{i}}{12I_{2}E_{b}} \frac{1 + 2\alpha^{2}K}{1 + 2K} \\ (S_{u})_{Q_{b}} &= Ph^{2} \frac{c_{o}}{12I_{2}E_{b}} \frac{1 + 2\alpha^{2}K}{1 + 2K} \\ (S_{u})_{Q_{b}} &= Ph^{2} \frac{c_{o}}{12I_{2}E_{b}} \frac{1 + 2\alpha^{2}K}{1 + 2K} \\ (S_{u})_{Q_{b}} &= Ph^{2} \frac{c_{o}}{12I_{2}E_{b}} \frac{1 + 2\alpha^{2}K}{1 + 2K} \\ (S_{u})_{Q_{b}} &= S_{nl} + (S_{b})_{M_{i}} \\ (S_{u})_{Q_{b}} &= S_{nl} + (S_{b})_{M_{o}} \\ (S_{u})_{Q_{b}} &= S_{nl} + (S_{u})_{Q_{b}} \\ (S_{u})_{Q_{b}} &= S_{nl} + (S_{u})_{Q_{b}} \\ \hline \\ & U \\ \hline \\ C_{u} &= e_{b} = \frac{76.2 - 26.3}{76.2} = 0 \\ \hline \\ C_{u} &= \frac{25.4 - 0 - 0}{2} = 0 \\ c_{i} &= \frac{25.4 - 0 - 0}{2} = 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ C_{o} &= - \frac{25.4 - 0 - 0}{2} = 0 \\ \hline \\$	$S_{ml} = P rac{H}{2t_2 E_m}$		
$\begin{split} & (S_{il})_{Q_{i}} = Ph^{2} \frac{c_{i}}{12I_{2}E_{b}} \frac{1 + 2\alpha^{2}K}{1 + 2K} \\ & (S_{il})_{Q_{b}} = Ph^{2} \frac{c_{o}}{12I_{2}E_{b}} \frac{1 + 2\alpha^{2}K}{1 + 2K} \\ & (S_{il})_{Q_{b}} = S_{ml} + (S_{b})_{Mi} \\ & (S_{T})_{Mi} = S_{ml} + (S_{b})_{Mo} \\ & (S_{T})_{Q_{i}} = S_{ml} + (S_{il})_{Q_{i}} \\ & (S_{T})_{Q_{i}} = S_{ml} \\ & (S_{T})_{Q_{i}$	$\left[\left(S_b ight)_{Mi} = Ph^2 rac{c_i}{12I_2E_b} \left[rac{1+K\left(3-lpha^2 ight)}{1+2K} ight]$		
$\begin{split} &(S_{il})_{Q_0} = Ph^2 \frac{c_o}{12I_2E_b} \frac{1+2\alpha^2 K}{1+2K} \\ &(S_T)_{Mi} = S_{ml} + (S_b)_{Mi} \\ &(S_T)_{Mo} = S_{ml} + (S_b)_{Mo} \\ &(S_{Tl})_{Q_i} = S_{ml} + (S_{il})_{Q_i} \\ &(S_{Tl})_{Q_i} = S_{ml} \\ &(S_{Tl})_{Q_i} = S_{ml} + (S_{il})_{Q_i} \\ &(S_{Tl})_{Q_i} = S_{ml} \\ &(S_{TL})$	$\left((S_b)_{Mo} = Ph^2 \frac{c_o}{12I_2 E_b} \left[\frac{1 + K \left(3 - \alpha^2 \right)}{1 + 2K} \right] $		
$\begin{array}{c c} (S_{T})_{Mi} = S_{ml} + (S_{b})_{Mi} \\ \hline \\ (S_{T})_{Mo} = S_{ml} + (S_{b})_{Mo} \\ \hline \\ (S_{Tl})_{Qi} = S_{ml} + (S_{ll})_{Qi} \\ \hline \\ \\ \hline \\ (S_{Tl})_{Qo} = S_{ml} + (S_{ll})_{Qo} \\ \hline \\ \hline \\ \hline \\ \\ e_{m} = e_{b} = \frac{76.2 - 26.3}{76.2} = & 0.6549 \\ \hline \\ $	$(S_{bl})_{Qi} = Ph^2 rac{c_i}{12I_2E_b} rac{1+2lpha^2 K}{1+2K}$		
$\begin{array}{c c} (S_{T})_{Mo} = S_{nl} + (S_{b})_{Mo} \\ \hline \\ (S_{Tl})_{Qi} = S_{nl} + (S_{d})_{Qi} \\ \hline \\ (S_{Tl})_{Qo} = S_{nl} + (S_{d})_{Qo} \\ \hline \\ \hline \\ \hline \\ e_{m} = e_{b} = \frac{76.2 - 26.3}{76.2} = & 0.6549 \\ \hline \\ $	$(S_{ll})_{Qo} = Ph^2 rac{c_o}{12I_2E_b} rac{1+2lpha^2 K}{1+2K}$		
$\begin{array}{c c} (S_{TI})_{Qi} = S_{ml} + (S_{ll})_{Qi} \\ \hline \\ (S_{TI})_{Qo} = S_{ml} + (S_{ll})_{Qo} \\ \hline \\ \hline \\ & \\ \hline \\ e_m = e_b = \frac{76.2 - 26.3}{76.2} = & \\ \hline \\ e_m = e_b = \frac{76.2 - 26.3}{76.2} = & \\ \hline \\$	$(S_T)_{Mi}=S_{ml}+(S_b)_{Mi}$		
$(S_{TI})_{Q_0} = S_{ml} + (S_{ll})_{Q_0}$ $\frac{\text{Ligament Efficiency}}{e_m = e_b = \frac{76.2 - 26.3}{76.2}} = 0.6549$ $\frac{\text{Plate Parameters}}{\text{New / Corroded}}$ $c_i = \frac{25.4 - 0 - 0}{2} = 12.7 \text{ mm}$ $c_o = -\frac{25.4 - 0 - 0}{2} = 0$ $\frac{12.7 \text{ mm}}{2}$ $\frac{12.7 \text{ mm}}{2}$ $\frac{12.7 \text{ mm}}{2}$	$(S_T)_{Mo}=S_{ml}+(S_b)_{Mo}$		
Ligament Efficiency Ligament Efficiency $e_m = e_b = \frac{76.2 - 26.3}{76.2} =$ 0.6549 Plate Parameters Plate Parameters New / Corroded c_i = $\frac{25.4 - 0 - 0}{2} =$ Operating Hot & Corroded Stress (kgf/cm ²) Allow (kgf/cm ²)	$(S_{Tl})_{Qi} = S_{ml} + (S_{li})_{Qi}$		
$e_m = e_b = \frac{76.2 - 26.3}{76.2} =$ 0.6549 Plate Parameters New / Corroded 12.7 mm c_o = -\frac{25.4 - 0 - 0}{2} = Operating Hot & Corroded Stress (kgf/cm ²) Allow (kgf/cm ²)	$(S_{Tl})_{Qo} = S_{ml} + (S_{bl})_{Qo}$		
Plate Parameters New / Corroded I2.7 mm $c_i = \frac{25.4 - 0 - 0}{2} =$ 12.7 mm Operating Hot & Corroded Stress (kgf/cm ²) Allow (kgf/cm ²)	Ligament Efficiency		
New / Corroded $c_i = \frac{25.4 - 0 - 0}{2} =$ 12.7 mm $c_o = -\frac{25.4 - 0 - 0}{2} =$ -12.7 mm Operating Hot & Corroded Stress (kgf/cm²) Allow (kgf/cm²)	$e_m = e_b = rac{76.2 - 26.3}{76.2} =$	0.6549	
$c_i = \frac{25.4 - 0 - 0}{2} =$ 12.7 mm $c_o = -\frac{25.4 - 0 - 0}{2} =$ -12.7 mm Operating Hot & Corroded Stress (kgf/cm ²) Allow (kgf/cm ²)		2	
$c_o = -\frac{25.4 - 0 - 0}{2} = -12.7 \text{ mm}$ $Operating Hot \& Corroded$ $Stress (kg_f/cm^2) Allow (kg_f/cm^2)$	New / Corroded		
Operating Hot & Corroded Stress Allow (kg _f /cm ²) (kg _f /cm ²)	$c_i = rac{25.4 - 0 - 0}{2} =$	12.7 mm	
Stress (kg _f /cm ²) (kg _f /cm ²)	$c_o = -rac{25.4 - 0 - 0}{2} =$	-12.7 mm	
(kg _f /cm ²) (kg _f /cm ²)	Operating Hot & Corroded		
$S_{ml} = 6.89 \cdot 1.02 \cdot \frac{152.4}{2 \cdot 25.4 \cdot 0.6549} = \frac{32.209}{1,315.434}$			Allow (kg _f /cm ²)
	$S_{ml} = 6.89 \cdot 1.02 \cdot \frac{152.4}{2 \cdot 25.4 \cdot 0.6549} =$	<u>32.209</u>	1,315.434

$\left \left(S_b \right)_{Mi} = 6.89 \cdot 1.02 \cdot 165.1^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^2 \right)}{1 + 2 \cdot 3.7809} \right] = \frac{12.7}{1 + 2 \cdot 3.7809} \right] = \frac{12.7}{1 + 2 \cdot 3.7809} = 12$	<u>241.619</u>	1,973.151
$\boxed{\left(S_{b}\right)_{Mo} = 6.89 \cdot 1.02 \cdot 165.1^{\ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809}\right] = 1.02 \cdot 100^{-1} \cdot 1$	<u>-241.619</u>	1,973.151
$(S_{li})_{Qi} = 6.89 \cdot 1.02 \cdot 165.1^{-2} \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	<u>129.119</u>	1,973.151
$(S_{ll})_{Q_0} = 6.89 \cdot 1.02 \cdot 165.1^{-2} \cdot - rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	<u>-129.119</u>	1,973.151
$(S_T)_{Mi} = 32.209 + 241.619 =$	<u>273.828</u>	1,973.151
$\left(S_{T} ight)_{Mo}=32.209+-241.619=$	<u>-209.411</u>	1,973.151
$(S_{Tl})_{Qi} = 32.209 + 129.119 =$	<u>161.327</u>	1,973.151
$(S_{Tl})_{Qo} = 32.209 + -129.119 =$	<u>-96.91</u>	1,973.151
Shop Test New		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
150.4		
$S_{ml} = 30.17 \cdot 1.02 \cdot rac{152.4}{2 \cdot 25.4 \cdot 0.6549} =$	<u>140.953</u>	2,404.491
$S_{ml} = 30.17 \cdot 1.02 \cdot \frac{152.4}{2 \cdot 25.4 \cdot 0.6549} = \left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^2)}{1 + 2 \cdot 3.7809} \right] = \left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^2)}{1 + 2 \cdot 3.7809} \right] = \left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^2)}{1 + 2 \cdot 3.7809} \right] \right]$	<u>140.953</u> <u>1.057.385</u>	2,404.491 3,606.736
	<u>1.057.385</u>	3,606.736
$\left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^2 \cdot \frac{12.7}{12 \cdot 1.365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^2)}{1 + 2 \cdot 3.7809} \right] = \frac{1}{1 + 2 \cdot 3.7809} \right]$	<u>1.057.385</u>	3,606.736
$ \left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^2 \cdot \frac{12.7}{12 \cdot 1.365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^2)}{1 + 2 \cdot 3.7809} \right] = \\ (S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 165.1^2 \cdot -\frac{12.7}{12 \cdot 1.365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^2)}{1 + 2 \cdot 3.7809} \right] = $	<u>1.057.385</u> - <u>1.057.385</u>	3,606.736 3,606.736
$ \left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^2)}{1 + 2 \cdot 3.7809} \right] = \\ \left[(S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 165.1^2 \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^2)}{1 + 2 \cdot 3.7809} \right] = \\ \left[(S_{ll})_{Qi} = 30.17 \cdot 1.02 \cdot 165.1^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = \\ \end{array} $	1.057.385 -1.057.385 565.055	3,606.736 3,606.736 3,606.736
$\begin{split} \hline \left(S_b\right)_{Mi} &= 30.17 \cdot 1.02 \cdot 165.1\ ^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231\ ^2\right)}{1 + 2 \cdot 3.7809}\right] = \\ \hline \left(S_b\right)_{Mo} &= 30.17 \cdot 1.02 \cdot 165.1\ ^2 \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231\ ^2\right)}{1 + 2 \cdot 3.7809}\right] = \\ \hline \left(S_{ll}\right)_{Qi} &= 30.17 \cdot 1.02 \cdot 165.1\ ^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231\ ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} = \\ \hline \left(S_{ll}\right)_{Qo} &= 30.17 \cdot 1.02 \cdot 165.1\ ^2 \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231\ ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} = \\ \hline \end{split}$	1.057.385 -1.057.385 565.055 -565.055	3,606.736 3,606.736 3,606.736 3,606.736
$\begin{split} \hline \left(S_b\right)_{Mi} &= 30.17 \cdot 1.02 \cdot 165.1\ ^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231\ ^2\right)}{1 + 2 \cdot 3.7809}\right] = \\ \hline \left(S_b\right)_{Mo} &= 30.17 \cdot 1.02 \cdot 165.1\ ^2 \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231\ ^2\right)}{1 + 2 \cdot 3.7809}\right] = \\ \hline \left(S_{il}\right)_{Qi} &= 30.17 \cdot 1.02 \cdot 165.1\ ^2 \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231\ ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} = \\ \hline \left(S_{il}\right)_{Qo} &= 30.17 \cdot 1.02 \cdot 165.1\ ^2 \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231\ ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} = \\ \hline \left(S_{Il}\right)_{Mi} &= 140.953 + 1,057.385 = \\ \end{split}$	1.057.385 -1.057.385 565.055 -565.055 1.198.339	3,606.736 3,606.736 3,606.736 3,606.736

Top/Bottom
$egin{aligned} S_{ms} &= P rac{h}{4t_1 E_m} iggg\{ 4 - \left[rac{2 + K igg(5 - lpha^2ig)}{1 + 2K} ight] iggr\} \end{aligned}$
$igg[(S_b)_{Ni} = P rac{c_i}{24 I_1 E_b} \left[- 3 H^2 + 2 h^2 rac{1 + 2 lpha^2 K}{1 + 2 K} ight]$
$(S_b)_{No} = P rac{c_o}{24 I_1 E_b} igg[- 3 H^2 + 2 h^2 rac{1 + 2 lpha^2 K}{1 + 2 K} igg]$
$(S_{bs})_{Qi} = Ph^2 rac{c_i}{12I_1E_b} rac{1+2lpha^2K}{1+2K}$

$(S_{bs})_{Qo}=Ph^2rac{c_o}{12I_1E_b}rac{1+2lpha^2K}{1+2K}$		
$(S_T)_{Ni} = S_{ms} + (S_b)_{Ni}$		
$(S_T)_{No} = S_{ms} + (S_b)_{No}$		
$(S_{Ts})_{Qi}=S_{ms}+(S_{bs})_{Qi}$		
$(S_{Ts})_{Qo} = S_{ms} + (S_{bs})_{Qo}$		
Plate Parameters		
New / Corroded	1	
$c_i = rac{15.88 - 0 - 0}{2} =$	7.94 mm	
$c_o = -rac{15.88 - 0 - 0}{2} =$	-7.94 mm	
Operating Hot & Corroded		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\boxed{S_{ms} \ = 6.89 \cdot 1.02 \cdot \frac{165.1}{4 \cdot 15.88 \cdot 1} \cdot \left\{ 4 - \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{-2} \right)}{1 + 2 \cdot 3.7809} \right] \right\} = }$	<u>35.365</u>	1,315.434
$\boxed{(S_b)_{Ni} = 6.89 \cdot 1.02 \cdot \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4^2 + 2 \cdot 165.1^2 \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = $	<u>-155.418</u>	1,973.151
$\left[(S_b)_{No} = 6.89 \cdot 1.02 \cdot -\frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4 \right]^2 + 2 \cdot 165.1 \right]^2 \cdot \frac{1 + 2 \cdot 0.9231 \left[2 \cdot 3.7809\right]}{1 + 2 \cdot 3.7809}\right] = 100000000000000000000000000000000000$	<u>155.418</u>	1,973.151
$(S_{bs})_{Qi} = 6.89 \cdot 1.02 \cdot 165.1^{-2} \cdot \frac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	<u>330.544</u>	1,973.151
$(S_{bs})_{Qo} = 6.89 \cdot 1.02 \cdot 165.1 \ ^2 \cdot \ - \ rac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot rac{1 + 2 \cdot 0.9231 \ ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	<u>-330.544</u>	1,973.151
$(S_T)_{Ni} = 35.365 + -155.418 =$	<u>-120.052</u>	1,973.151
$(S_T)_{No} = 35.365 + 155.418 =$	<u>190.783</u>	1,973.151
$(S_{Ts})_{Qi} = 35.365 + 330.544 =$	<u>365.909</u>	1,973.151
$(S_{Ts})_{Qo} = 35.365 + -330.544 =$	<u>-295.178</u>	1,973.151
Shop Test New		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\boxed{S_{ms}\ = 30.17\cdot 1.02\cdot \frac{165.1}{4\cdot 15.88\cdot 1}\cdot \left\{4-\left[\frac{2+3.7809\cdot \left(5-0.9231\ ^2\right)}{1+2\cdot 3.7809}\right]\right\}}=$	<u>154.768</u>	2,404.491
$(S_b)_{Ni} = 30.17 \cdot 1.02 \cdot \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4^2 + 2 \cdot 165.1^2 \cdot \frac{1 + 2 \cdot 0.9231^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] =$	<u>-680.147</u>	3,606.736
$\left[(S_b)_{No} = 30.17 \cdot 1.02 \cdot - \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4^{-2} + 2 \cdot 165.1^{-2} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = \frac{1}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4^{-2} + 2 \cdot 165.1^{-2} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = \frac{1}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4^{-2} + 2 \cdot 165.1^{-2} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = \frac{1}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4^{-2} + 2 \cdot 165.1^{-2} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = \frac{1}{24 \cdot 3.7809} \cdot \frac{1}{24 \cdot 3.7809} \cdot \frac{1}{24 \cdot 3.7809} = \frac{1}{24 \cdot 3.7809} \cdot $	<u>680.147</u>	3,606.736
$(S_{bs})_{Qi} = 30.17\cdot 1.02\cdot 165.1^{-2}\cdot rac{7.94}{12\cdot 333.3957\cdot 1}\cdot rac{1+2\cdot 0.9231^{-2}\cdot 3.7809}{1+2\cdot 3.7809} =$	<u>1,446.54</u>	3,606.736

$\left((S_{bs})_{Qo}=30.17\cdot 1.02\cdot 165.1^{2}\cdot-rac{7.94}{12\cdot 333.3957\cdot 1}\cdotrac{1+2\cdot 0.9231^{2}\cdot 3.7809}{1+2\cdot 3.7809}=$	<u>-1,446.54</u>	3,606.736
$(S_T)_{Ni} = 154.768 + -680.147 =$	<u>-525.379</u>	3,606.736
$(S_T)_{No} = 154.768 + 680.147 =$	<u>834.915</u>	3,606.736
$(S_{Ts})_{Qi} \ = 154.768 + 1,446.54 =$	<u>1,601.308</u>	3,606.736
$(S_{Ts})_{Qo} = 154.768 + -1,446.54 =$	<u>-1,291.772</u>	3,606.736

Stay					
$egin{aligned} S_{mst} &= P rac{h}{2t_3 E_{st}} \left[rac{2 + K \left(5 - lpha^2 ight)}{1 + 2K} ight] \end{aligned}$					
Operating Hot & Corroded					
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)			
$\left[S_{mst} = 6.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{-2}\right)}{1 + 2 \cdot 3.7809}\right] = \right.$	<u>99.89</u>	1,315.434			
Shop Test New					
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)			
$\boxed{S_{mst} = 30.17 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{-2}\right)}{1 + 2 \cdot 3.7809}\right]}_{1 + 2 \cdot 3.7809} = $	<u>437.144</u>	2,404.491			

End Plates for Return Header

ASME Section VIII Division 1, 2021 Edition Metric						
Component		Appendix 13 End Plate				
Material		SA-516 70 (II-D Metric p. 20, In. 45)				
Impact Tested	Normalized	Fine Grain Practice	РѠҤТ			
No	No	No	Yes			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
Int	ernal	6.89	343.33	-28.89		
Ext	ternal	1.03	343.33	-20.09		
Static Liquid Head						
Condition		P _s (bar)	H _s (mm)	SG		
Test h	orizontal	0.03	342.9	1		
Dimensions						
Short Insid	Inside Length (d) 152.4 mm					
Long Inside Length (D)		165.1 mm				
Nominal Thickness		12 mm				
Corrosion	Inner		0 mm			
	Outer		0 mm			
Joint Efficiency		1				

Results Summary			
Governing condition internal pressure			
Minimum thickness per UG-16	1.5 mm + 0 mm = 1.5 mm		
Design thickness due to internal pressure (t)	<u>5.42</u> mm		
Design thickness due to external pressure (t_e)	<u>2.1</u> mm		
Maximum allowable working pressure (MAWP)	<u>33.76</u> bar		
Maximum allowable pressure (MAP)	<u>36.11</u> bar		
Maximum allowable external pressure (MAEP)	<u>33.76</u> bar		
Rated MDMT	-48°C		

UCS-66 Material Toughness Requirements			
Governing thickness, t _g =	12 mm		
Exemption temperature from Fig UCS-66M Curve B =	-23.31°C		
Stress ratio per UCS-66(b)(1)(b) $= rac{22.26}{36.11} =$	0.6163		
Reduction in MDMT, T _R from Fig UCS-66.1M =	21.5°C		
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C		
$MDMT = \max \left[MDMT - T_R - T_{PWHT} , -48 ight] = \max \left[-23.31 - 21.5 - 17, -48 ight] =$	-48°C		
Material is exempt from impact testing at the Design MDMT of -28.89°C.			

Factor C from Appendix 13-4(f)

Factor C = 0.2

Factor Z

$$Z = \min\left[3.4 - \frac{2.4 \cdot d}{D}, 2.5\right] = \min\left[3.4 - \frac{2.4 \cdot d}{165.1}, 2.5\right] = 1.1846$$

Design thickness, (at 343.33 °C) UG-34(c)(3)

$$t = d \cdot \sqrt{\frac{Z \cdot C \cdot P \cdot 1.02}{S \cdot E}} + \text{Corrosion} = 152.4 \cdot \sqrt{\frac{1.1846 \cdot 0.2 \cdot 6.89 \cdot 1.02}{1,315.434 \cdot 1}} + 0 = \underline{5.42} \text{ mm}$$

Maximum allowable working pressure, (at 343.33 °C)

$$MAWP = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 - P_s = \left(\frac{\frac{1,315.434}{1.02} \cdot 1}{0.2 \cdot 1.1846}\right) \cdot \left(\frac{12}{152.4}\right)^2 - 0 = \underline{33.76} \text{ bar}$$

Maximum allowable pressure, (At 21.11 °C)

$$Z = \min\left[3.4 - \frac{2.4 \cdot d}{D}, 2.5\right] = \min\left[3.4 - \frac{2.4 \cdot d}{165.1}, 2.5\right] = 1.1846$$

$$MAP = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{\frac{1,407,208}{1.02} \cdot 1}{0.2 \cdot 1.1846}\right) \cdot \left(\frac{12}{152.4}\right)^2 = \underline{36.11} \text{ bar}$$

Design thickness for external pressure, (at 343.33 °C) UG-34(c)(3)

$$t = d \cdot \sqrt{\frac{Z \cdot C \cdot P_e \cdot 1.02}{S \cdot E}} + \text{Corrosion} = 152.4 \cdot \sqrt{\frac{1.1846 \cdot 0.2 \cdot 1.03 \cdot 1.02}{1,315.434 \cdot 1}} + 0 = \underline{2.1} \text{ mm}$$

Maximum allowable external pressure, (At 343.33 °C)

MAEP =
$$\left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{\frac{1,315.434}{1.02} \cdot 1}{0.2 \cdot 1.1846}\right) \cdot \left(\frac{12}{152.4}\right)^2 = \frac{33.76}{33.76}$$
 bar